
Quadratic forms and Galois Cohomology

R. Parimala

Department of Mathematics and Computer Science
Emory University

May 22, 2013

Fields Institute, Toronto



Classical invariants

We begin by recalling the classical invariants of quadratic
forms.

Let k be a field, char(k) 6= 2 and q a nondegenerate quadratic
form over k .

Dimension mod 2 : dim2(q) = n (mod 2) ∈ Z/2Z

Discriminant : disc(q) = (−1)n(n−1)/2 det(Aq) ∈ k∗/k∗2

Clifford invariant :

c(q) =

{
[C(q)] ∈ 2Br(k), if dim(q) even
[C0(q)] ∈ 2Br(k), if dim(q) odd.

These classical invariants take values in the Galois
cohomology groups.



Galois cohomology

Hn(k ,Z/2Z) = lim−→
L/k finite Galois

Hn(Gal(L/k),Z/2Z)

n=0 H0(k ,Z/2Z) = Z/2Z

n=1 H1(k ,Z/2Z) = k×/k×2 (Kummer isomorphism)

(a) ∈ H1(k ,Z/2Z) denotes the square class of a ∈ k×

n=2 H2(k ,Z/2Z) = 2Br(k)

The cup product (a).(b) represents the quaternion algebra
with generators i , j and relations i2 = a, j2 = b, ij = −ji .



Milnor’s conjecture

Milnor (1970) proposed ‘successive’ higher invariants for
quadratic forms which could determine the isomorphism class
of a quadratic form up to planes.

Definition

An n-fold Pfister form is a quadratic form isomorphic to
〈〈a1, · · · ,an〉〉 = 〈1,−a1〉 ⊗ 〈1,−a2〉 ⊗ · · · ⊗ 〈1,−an〉.

Pn(k) = Set of isomorphism classes of n-fold Pfister forms.

The assignment

en(〈〈a1, . . . ,an〉〉) = (a1) · (a2) · · · · · (an) ∈ Hn(k ,Z/2Z)

is well-defined on Pn(k).



Milnor conjecture

I(k) = ideal of even dimensional forms in W (k).

In(k) = I(k)n is generated by Pn(k).

Conjecture (Milnor,1970)
The map en extends to a homomorphism

en : In(k)→ Hn(k ,Z/2Z)

which is onto with kernel In+1(k).

Equivalently, there is an isomorphism

(en) :
⊕
n≥0

In(k)/In+1(k) −→
⊕
n≥0

Hn(k ,Z/2Z)

of the graded Witt ring and the graded Galois cohomology ring.



Milnor Conjecture

Milnor conjecture as stated above is a consequence of the two
conjectures of Milnor relating Milnor ring K∗F with the mod 2
Galois cohomology ring and the graded Witt ring.

Milnor conjecture for n = 2 is a theorem of Merkurjev (1981)
which is the first major breakthrough for a general field.

Milnor conjecture is a theorem due to Voevodsky (2003) and
Orlov-Vishik-Voevodsky (2007).



Milnor Conjecture

The conjecture, together with Arason-Pfister Hauptsatz
∩n≥1In(k) = 0, gives a complete classification of quadratic
forms by their Galois cohomological invariants.



u-invariant

We shall discuss how a good understanding of the generation
of the Galois cohomology group by symbols leads to bounding
the u-invariant of the underlying field.

Definition
u(k) := max{dim(q) | q anisotropic quadratic form over k}



Symbol length

An element of the form (a1) · (a2) · · · (an) in Hn(k ,Z/2Z) is
called an n-symbol.

Definition
n-symbol length of k is bounded by N if every element
ζ ∈ Hn(k ,Z/2Z) is a sum of at most N symbols.

If k is a number field, n-symbol length of k is 1 for all n.



u-invariant and symbol length

Proposition
Suppose k is a field with Hn(k ,Z/2Z) = 0 for n ≥ n0 and the
i-symbol length of F is bounded for i < n0. Then u(k) <∞.

If i-symbol length is at most r , every ζ ∈ H i(k ,Z/2Z) is the
invariant of a quadratic form in I i(k) of dimension at most r2i .

Thus given any quadratic form q over k , by subtracting
successively quadratic forms of bounded dimensions in I i , one
can bring q into In0(k). This group is zero because
Hn0(k ,Z/2Z) = 0.



u-invariant and symbol length

The converse is also true.

Theorem (Saltman)
If u(k) is finite, the i-symbol length is bounded for all i .

i = 3 There is a generic quadratic form q̃ of dimension 2m in I3!
Thus e3(q̃) is a sum of bounded number of symbols. In
particular over any field k , any form q in I3(k) of dimension
at most 2m has bounded 3- symbol length.

i ≥ 4 There is no generic quadratic form q of given dimension in
I i . Saltman proves that there exist finitely many generic
types in H i , one of which would specialise to ei(q) for a
given quadratic form q in I i(k) of dimension 2m.



Function fields of p-adic curves

Let us look at some special classes of fields of arithmetic
interest.

Let K be a p-adic field. Then u(K ) = 4.

Let F be the function field of a curve over K .

Question (Kaplansky)
Is u(F ) = 8?



Function fields of p-adic curves

The first finiteness results for u(F ) were as late as 1997.

Theorem (Merkurjev, Hoffmann-Van Geel)
u(F ) ≤ 22 for p 6= 2.

A key ingredient in their proof is the following period-index
bound of Saltman.



Function fields of p-adic curves

Theorem (Saltman)
Let A be a central simple algebra over F of index coprime to p.
Then index(A) divides period(A)2.

In particular, every 2-torsion element in Br(F ) has index at
most 4, hence a tensor product of two quaternion algebras (if
p 6= 2). i.e 2-symbol length of F is at most 2.

Theorem (Parimala-Suresh)
If p 6= 2, then every element in H3(F ,Z/2Z) is a symbol.

The above symbol length bounds brought down the bound for
the u-invariant to 12.



Function fields of p-adic curves

Let F be function field in one variable over a p-adic field.

Theorem (Parimala-Suresh 2007)
If p 6= 2, u(F ) = 8.

Theorem (Heath-Brown, Leep 2010)
For all p, u(F ) = 8.

The method of proof of Heath-Brown and Leep is very different
from Galois cohomological methods.



Techniques of Saltman

Let K be a p-adic field.

Let X/K be a smooth projective geometrically integral curve
over K .

F = K (X ).

Let O be the ring of integers in K .

Let κ be the residue field of K .



Techniques of Saltman

Let X → O be a regular proper model of X .

Let X0 → κ be the special fiber of X .

Let X 1 be the set of codimension one points of X .

x ∈X 1, OX ,x is a discrete valuation ring with field of fractions
F and residue field κ(x)



Techniques of Saltman

Let A be a central simple algebra over F of exponent ` 6= p.

Then A is unramified at x if there exists an Azumaya algebra A
over OX ,x such that [A ⊗OX ,x F ] = [A].

The unramified condition can be tested by the residue map

∂x : H2(F , µ`)→ H1(κ(x),Z/`Z)

A is unramified at x if and only if ∂x (A) = 0.

A is unramified on X if for every x ∈X 1, ∂x (A) = 0.

By purity A is unramified on X if and only if A = A ⊗OX
F for

some Azumaya algebra A on X .



Techniques of Saltman

Theorem (Grothendieck)
Br(X ) = 0

Thus a finite extension L over F splits A⇔ A⊗F L is unramified
on a regular proper model of L over O.

Given a central simple algebra A over F , Saltman proves that
there exist f ,g ∈ F ∗ such that A⊗ F (

√̀
f ,
√̀

g) is unramified on a
regular proper model of F (

√̀
f ,
√̀

g) .



Degree three cohomology

One can define unramified elements in Hn(F , µ⊗2
` ) with respect

to a model X as elements which belong to the image of
Hn

et(OX ,x , µ
⊗2
` )→ Hn(F , µ⊗2

` ) for every x ∈X 1.

Unramified elements are precisely the elements of the kernel of
the residue maps.

Theorem (Kato)
H3

nr (F/X , µ⊗2
` ) = 0.

Kato’s result was used in the proof that every element in
H3(F ,Z/2Z) is a symbol.



The bad characteristic case

Let F be the function field of a p-adic curve.

For ` = p, it remained open whether there were bounds for the
index in terms of the period for the p-torsion elements in Br(F ).

For ` = p = 2, u(F ) = 8⇒ for any element in 2Br(F ) is a sum
of at most three symbols (index divides 8).

If A ∼ H1 ⊗ · · · ⊗ Hn, Hi quaternion algebras, there is a
quadratic form q of dimension 2n + 2 such that e2(q) = A.

q ' q1 ⊥ planes, dim(q1) = 8

[A] = e2 (q1) = tensor product of three quaternion algebras



The bad characteristic case

Theorem (Parimala-Suresh)
Let F be a function field in one variable over a p-adic field and
A a central simple algebra over F . Then the index of A divides
the square of its period.

In fact, one has the following more general statement.



The bad characteristic case

Let κ be a field of characteristic p.

p-rank(κ) is n if [κ : κp] = pn.

Theorem (Parimala-Suresh)
Let K be a complete discrete valued field with residue field κ
and F a function field in one variable over K . Suppose that
p-rank(κ) = n. Then for any central simple algebra A over F of
exponent p, index(A) divides p2n+2.

In particular if κ is perfect, index(A) divides p2.



The method of proof

There are two main ingredients in the proof of the above
theorem.

I. Kato’s filtration

II. Harbater-Hartmann-Krashen patching.



Kato’s filtration

Let (K , ν) be a complete discrete valued field with char(K ) = 0
and char(κ) = p.

Let R be the valuation ring of ν and π a parameter.

U0 = units in R, Ui = {u ∈ U0 | u ≡ 1 mod πi}

Suppose K contains a primitive pth root of unity ζ.
For a,b ∈ K ∗, let (a,b) denote the cyclic algebra of degree p
with generators x , y and relations xp = a, yp = b, xy = ζyx



Kato’s filtration

br(K )0 = pBr(K )

br(K )i = subgroup of pBr(K ) generated by
{(u,a) | u ∈ Ui ,a ∈ K ∗}.

Kato’s filtration is finite: br(K )n = 0 for n ≥ N = ν(p)p
p−1 .



Kato’s filtration

Let Ω1
κ be the module of differentials of κ.

Let K2(κ) be the Milnor K -group and k2(κ) = K2(κ)/pK2(κ).

There are surjective homomorphisms:

ρ0 : k2(κ)⊕ κ∗/κ∗p → br(K )0/br(K )1

defined by ρ0((a,b) + (c)) = (ã, b̃) + (π, c̃)

ρi : Ω1
κ ⊕ κ→ br(K )i/br(K )i+1, i ≥ 1

defined by ρi(x
dy
y , z) = (1 + x̃πi , ỹ) + (π,1 + z̃πi).

Here ˜ denote the lifts in R.



Kato’s filtration

Let {y1, · · · , yn} be a p-basis of κ. Then {dyi | 1 ≤ i ≤ n} is a
basis of Ω1

κ and {dyi ∧ dyj | 1 ≤ i < j ≤ n} is a basis of Ω2
κ.

We note that k2(κ) is isomorphic to a subgroup of Ω2
κ.

Using the surjections ρi , one can modify a given element
ζ ∈ pBr(K ) by a bounded number of symbols to fit it into
br(K )N+1 = 0.

This leads to the fact that index(ζ) divides p2n+1 (In fact, if
n ≥ 1, index(ζ) divides p2n).



HHK patching

Let K be a complete discrete valued field with residue field κ.

Let X be a smooth projective geometrically integral curve over
K with function field F .

Let X → Spec(O) be a regular proper model of X .

Let X0 → Spec(κ) be the special fiber.

For x ∈X0, let ÔX ,x denote the completion of the local ring
OX ,x at x .

Let Fx be the field of fraction of ÔX ,x .



HHK patching

Theorem (Harbater-Hartmann-Krashen.)
For any α ∈ Br(F ),

index(α) = lcm(index(αFx ) | x ∈X0)

Thus it suffices to bound the indices of α⊗F Fx for all x ∈X0
for a suitable model X of F .



The method of proof

For any x ∈X0 corresponding to an irreducible component of
X0, Fx is a complete discrete valued field and Kato’s filtration
gives bounds for αFx .

For a closed point x of X0, one has to do some further work to
get bounds.

The theorem of HHK together with these bounds leads to the
required period-index bound for F .



The bad characteristic-u-invariant

The above period-index bounds lead surprisingly to the
following

Theorem (Parimala-Suresh.)
Let K be a complete discrete valued field with residue field κ.
Suppose char(K ) = 0, char(κ) = 2 and κ is perfect. Let F be a
function field in one variable over K . Then u(F ) = 8.

This theorem recovers Heath-Brown/Leep result for function
fields of dyadic curves.



Function fields over number fields

Let K be a totally imaginary number field.

u(K ) = 4 (Hasse-Minkowski Theorem)

Let F be a function field in one variable over K

An open question
Is u(F ) <∞?

There are some conditional results due to
Lieblich-Parimala-Suresh.



Function fields over number fields

To obtain the finiteness of the u-invariant, one tries to bound
the 2 and 3-symbol lengths in F .

Note that cd(F ) ≤ 3 and H4(F ,Z/2Z) = 0.



Function fields over number fields

Let K be a totally imaginary number field and O the ring of
integers in K .

Let X be a smooth projective geometrically integral curve over
K and F its function field.

Let X → O be a regular proper model of X .

The sharp difference between the local and the global cases:

Br(X ) is not necessarily zero!



Function fields over number fields

Thus to bound the 2-symbol length of F , one is led to the
following questions:

1. Can one split the ramification of α ∈ H2(F , µ`) in a
bounded degree extension of F?

2. Can one bound the index of classes in `Br(X )?



Function fields over number fields

The first question has an affirmative answer.

Theorem ( Lieblich, Parimala, Suresh)
Let α ∈ `Br(F ). Then there exist f ,g,h ∈ F ∗ such that
α⊗ F (

√̀
f ,
√̀

g,
√̀

h) is unramified on any regular proper model
over the ring of integers in K .

Thus the 2-symbol length of F is bounded if and only if indices
of unramified classes are bounded for all finite extensions of F .



Function fields over number fields

We also have the following:

Theorem (Suresh)
For every β ∈ H3(F ,Z/2Z), there exists f ∈ F ∗ such that
β = (f ) · α with α ∈ H2(F ,Z/2Z).

Thus 3-symbol length is bounded if 2-symbol length is
bounded.

Thus u(F ) <∞⇔ every element in Br(X ) has bounded index
for any regular proper model of every finite extension of F .

Conjecturally, for α ∈ `Br(X ), index(α) divides `2.



Colliot-Thélène’s conjecture

The Brauer Manin obstruction

Let X be a smooth projective variety over a number field K .

ΩK = set of all places of K

v ∈ ΩK , Kv completion of K at v .

For xv ∈ X (Kv ) and α ∈ Br(X ), α(xv ) ∈ Br(Kv )
invv
↪→ Q/Z.

Further α(xv ) = 0 for almost all v ∈ ΩF



Colliot-Thélène’s conjecture

Reciprocity for Br(K ) yields : x ∈ X (K ), α ∈ Br(X ),∑
v

invv (α(x)) = 0

Brauer-Manin set :(∏
v

Br(X (Kv ))

)Br(X)

= {(xv ) |
∑

v

invv (α(xv )) = 0}



Colliot-Thélène’s conjecture

Brauer-Manin obstruction is the only obstruction to the Hasse
principle for the existence of rational points on X if the following
is true :

Brauer-Manin set is non-empty⇒ X (K ) 6= ∅.

There are examples to show that the Brauer-Manin obstruction
is not the only obstruction to HP for the existence of rational
points.



Colliot-Thélène’s conjecture

One can define in a similar way the Brauer-Manin obstruction to
existence of zero-cycles of degree one on X .

Zero-cycles of degree one∑
i nixi , xi closed points of X such that

∑
nideg(xi) = 1

x ∈ X (K ), x is a zero-cycle of degree 1.

Conjecture (Colliot-Thélène)
Let X be a smooth projective variety over a number field. Then
the Brauer-Manin obstruction is the only obstruction to Hasse
principle for the existence of 0-cycles of degree one on X .



u-invariant

Theorem (M.Lieblich, Parimala, Suresh)
If CT-conjecture is true for unirational varieties X , then for all
α ∈ `Br(F ) unramified on a model X of O, ind(α) divides
period(α)2.

Corollary
Let K be a totally imaginary number field and F , a function field
in one variable over K . If CT-conjecture holds, then u(F ) <∞.



Idea of the proof

Let K be a number field.

Let X be a smooth projective geometrically integral curve over
K and F its function field.

X → O : Regular proper model of X over the ring of integers O
in K .

α ∈ `Br(X ), αK ∈ `Br(X ),

α̃ ∈ H2
ff (X , µ`), a lift of α.

C̃ : µ`-gerbe on X associated to α.

C : µ`-gerbe on X which is the restriction of C̃ to X .



Idea of the proof

M : moduli stack of C -twisted stable sheaves of rank ` and
determinant 1.

M : moduli space of C-twisted stable sheaves of rank ` and
determinant 1.

M is a smooth quasi projective variety over K .

M is a µ`-gerbe on M.

Br(M)/Br(K ) is generated by the class ζ of the µ`-gerbe M



Idea of proof

Let Msc be a smooth compactification of M.

(M(A(K )))Br(M) ↪→ (
∏

v Msc(Kv ))Br(Msc)

For all v ∈ ΩK , αv = 0 since Br(Xv ) = 0 and hence
M (Kv ) 6= ∅.

In particular M(Kv ) 6= ∅.

Further, for all zv ∈ M(Kv ), ζ(zv ) = 0

Hence (M(A(K )))Br(M) 6= ∅

⇒ (
∏

v Msc(Kv )Br(Msc)) 6= ∅



Idea of proof

CT-Conjecture⇒ Msc has a zero cycle of degree 1.

⇒ M has a zero-cycle of degree 1

⇒ ∃ K ′/K finite extension with [K ′ : K ] coprime to ` such that
M(K ′) 6= ∅ ⇒M ×M K ′ ∈ `Br(K ′) has index `, k ′ being a
number field.

⇒ ∃ E/K ′, [E : K ′] = ` and M (E) 6= ∅.

⇒ αE has index `.

⇒ α has index `2.


