Instability in Hamiltonian systems and Arnold diffusion

based on Joint works with P. Bernard and V. Kaloshin

Ke Zhang

University of Toronto

September 26, 2012

Outline

Instability in Hamiltonian systems

Diffusion along single resonances

Diffusion near a double resonance

Open questions

Origin of the study: the solar system

Solar system = \prod (Sun-planet) + (interactions).

This is an example of nearly integrable systems.

Figure: Solar system

Nearly integrable systems

Action-angle coordinates:

$$H_{\epsilon}(\theta, p) = H_0(p) + \epsilon H_1(\theta, p), \theta \in \mathbb{T}^m, p \in \mathbb{R}^m$$

э

Nearly integrable systems

Action-angle coordinates:

$$H_{\epsilon}(\theta, p) = H_0(p) + \epsilon H_1(\theta, p), \theta \in \mathbb{T}^m, p \in \mathbb{R}^m.$$

Equations of motion:

$$\begin{cases} \dot{\theta} = \partial_p H_0(p) + O(\epsilon) \\ \dot{p} = O(\epsilon) \end{cases}$$

•

Nearly integrable systems

Action-angle coordinates:

$$H_{\epsilon}(\theta, p) = H_0(p) + \epsilon H_1(\theta, p), \theta \in \mathbb{T}^m, p \in \mathbb{R}^m.$$

Equations of motion:

$$\begin{cases} \dot{\theta} = \partial_p H_0(p) + O(\epsilon) \\ \dot{p} = O(\epsilon) \end{cases}$$

٠

► The energy surface {*H_e* = *E*} is invariant. There is a reduction to a time-periodic system

$$H_{\epsilon}(\theta, p, t) = H_0(p) + \epsilon H_1(\theta, p, t), \theta \in \mathbb{T}^n, p \in \mathbb{R}^n,$$

where n = m - 1. The system has $n\frac{1}{2}$ degrees of freedom.

Non-integrability

Theorem (Poincaré)

The planar three-body problem is not integrable.

Non-integrability

Theorem (Poincaré)

The planar three-body problem is not integrable.

Non-integrability

Theorem (Poincaré)

The planar three-body problem is not integrable.

Figure: Homoclinic tangles

Nearly integrable systems are not ergodic

Question Ergodic hypothesis?

Nearly integrable systems are not ergodic

Question Ergodic hypothesis?

Nearly integrable systems are not ergodic

Question

Ergodic hypothesis?

Theorem (Kolmogorov-Arnold-Moser)

For a nearly integrable system with m degrees of freedom, a nearly full measure set of the phase space is filled with m-dimensional invariant tori. Each invariant torus is $\sqrt{\epsilon}-$ close (and diffeomorphic) to

$$\mathbb{T}^m \times \{p = p_0\}.$$

(The p variable is stable).

KAM tori (picture)

Figure: KAM tori for the standard map

• Consider the time periodic system $H_{\epsilon}(\theta, p, t)$ from now on.

- Consider the time periodic system $H_{\epsilon}(\theta, p, t)$ from now on.
- Define $\omega(p) = \partial_p H_0(p)$, we call it the frequency.

$$\dot{\theta} = \omega(p) + O(\epsilon).$$

- Consider the time periodic system $H_{\epsilon}(\theta, p, t)$ from now on.
- Define $\omega(p) = \partial_p H_0(p)$, we call it the frequency.

$$\dot{\theta} = \omega(p) + O(\epsilon).$$

 \blacktriangleright A frequency $\omega \in \mathbb{T}^n$ admits a resonance if there exists $k \in \mathbb{Z}^{n+1}$ with

$$k \cdot (\omega, 1) = 0.$$

- Consider the time periodic system $H_{\epsilon}(\theta, p, t)$ from now on.
- Define $\omega(p) = \partial_p H_0(p)$, we call it the frequency.

$$\dot{\theta} = \omega(p) + O(\epsilon).$$

 \blacktriangleright A frequency $\omega \in \mathbb{T}^n$ admits a resonance if there exists $k \in \mathbb{Z}^{n+1}$ with

$$k \cdot (\omega, 1) = 0.$$

► KAM theorem applies to "very non-resonant" vectors.

Quasi-ergodic hypothesis

 ω_1

Figure: Resonances

Quasi-ergodic hypothesis

Figure: Resonances

Question

Is there a dense orbit (for a generic system)?

Arnold diffusion

Conjecture (Arnold 1963)

For a "typical" nearly integrable system, there is topological instability when the KAM tori do not divide the phase space ($n \ge 2$).

Main results

Theorem

For a typical $H_{\epsilon} = H_0 + \epsilon H_1$ with $n \ge 2$, there exists an orbit $(\theta_{\epsilon}(t), p_{\epsilon}(t))$ and $T_{\epsilon} > 0$ such that

$$||p_{\epsilon}(T_{\epsilon}) - p_{\epsilon}(0)|| > l(H_1) > 0.$$

(Bernard, Kaloshin, Z, preprint)

Main results, cont.

Theorem

For a given $\gamma>0,$ for a typical H_ϵ with n=2, there exists a $\gamma-{\rm dense}$ orbit.

(Kaloshin, Z, preprint)

Main results, cont.

Theorem

For a given $\gamma>0,$ for a typical H_ϵ with n=2, there exists a $\gamma-{\rm dense}$ orbit.

(Kaloshin, Z, preprint)

Main results, cont.

Theorem

For a given $\gamma > 0$, for a typical H_{ϵ} with n = 2, there exists a γ -dense orbit.

(Kaloshin, Z, preprint)

Remark

This theorem was announced by J. Mather (2003). We provide an alternative approach. This theorem does not imply existence of a dense orbit. As $\gamma \to 0$, the parameter $\epsilon \to 0$.

Path of diffusion

Figure: Diffusion path

Diffusion picture

Figure: Numeric simulation by Guzzo, Lega and Froeschlé

► System:

$$H(\theta_1, \theta_2, p_1, p_2, t) = \frac{1}{2}p^2 + \epsilon(\cos \theta_1 - 1) - \epsilon\mu(\cos \theta_1 - 1)f(\theta_2, t).$$

・ロト ・ 理ト ・ ヨト ・ ヨト

3

► System:

$$H(\theta_1, \theta_2, p_1, p_2, t) = \frac{1}{2}p^2 + \epsilon(\cos \theta_1 - 1) - \epsilon\mu(\cos \theta_1 - 1)f(\theta_2, t).$$

• For $\mu = 0$, the system is a product of pendulum-rotator.

∃ >

► System:

$$H(\theta_1, \theta_2, p_1, p_2, t) = \frac{1}{2}p^2 + \epsilon(\cos \theta_1 - 1) - \epsilon\mu(\cos \theta_1 - 1)f(\theta_2, t).$$

• For $\mu = 0$, the system is a product of pendulum-rotator.

∃ >

► System:

$$H(\theta_1, \theta_2, p_1, p_2, t) = \frac{1}{2}p^2 + \epsilon(\cos \theta_1 - 1) - \epsilon \mu(\cos \theta_1 - 1)f(\theta_2, t).$$

• For $\mu = 0$, the system is a product of pendulum-rotator.

Arnold mechanism: picture

Figure: Arnold mechanism

Arnold mechanism: picture

Figure: Arnold mechanism

Diffusion orbit follows the invariant cylinder $\{p_1 = \theta_1 = 0\}$, p_1 stays close to 0, p_2 slowly increases.

Shadowing a transition chain

Figure: Lambda lemma

Mather mechanism

Theorem (Mather 1991)

The only obstruction to diffusion in a $1\frac{1}{2}$ degrees of freedom system is the existence of invariant tori.

Figure: Mather mechanism

NHIC near a single resonance

► Near the single resonance (1,0,0) · (ω₁, ω₂, 1) = 0, the system takes the normal form

$$H_0(\theta, p, t) = H_0(p) + \epsilon Z(\theta_1, p) + O(\epsilon \delta).$$

NHIC near a single resonance

► Near the single resonance (1,0,0) · (ω₁, ω₂, 1) = 0, the system takes the normal form

$$H_0(\theta, p, t) = H_0(p) + \epsilon Z(\theta_1, p) + O(\epsilon \delta).$$

 (Bernard, Kaloshin, Z) There exists a normally hyperbolic invariant cylinder along a single resonance, away from double resonances.

Diffusion along a single resonance

Figure: Diffusion along a single resonance

Bernard, Cheng-Yan, Bernard-Kaloshin-Z.

The role of the double resonance

Photo by ruffin_ready at flickr.

The slow mechanical system

The system near a double resonance can be rescaled into the following form:

$$\begin{split} H^s_\epsilon(\theta,I,\tau) &= const + K(I) - U(\theta) + \sqrt{\epsilon} P(\theta,I,\tau), \\ \theta \in \mathbb{T}^2, I \in \mathbb{R}^2, \tau \in \sqrt{\epsilon} \mathbb{T}. \end{split}$$

The slow mechanical system

The system near a double resonance can be rescaled into the following form:

$$\begin{split} H^s_\epsilon(\theta,I,\tau) &= const + K(I) - U(\theta) + \sqrt{\epsilon} P(\theta,I,\tau), \\ \theta \in \mathbb{T}^2, I \in \mathbb{R}^2, \tau \in \sqrt{\epsilon} \mathbb{T}. \end{split}$$

Generically, the system H^s = K(I) − U(θ) admits a four-dimensional saddle at I = 0, θ = θ₀, where U(θ₀) = min U. We assume all its eigenvalues are distinct.

The slow mechanical system

The system near a double resonance can be rescaled into the following form:

$$\begin{split} H^s_\epsilon(\theta,I,\tau) &= const + K(I) - U(\theta) + \sqrt{\epsilon} P(\theta,I,\tau), \\ \theta \in \mathbb{T}^2, I \in \mathbb{R}^2, \tau \in \sqrt{\epsilon} \mathbb{T}. \end{split}$$

- Generically, the system H^s = K(I) − U(θ) admits a four-dimensional saddle at I = 0, θ = θ₀, where U(θ₀) = min U. We assume all its eigenvalues are distinct.
- ▶ Generically, the system H_e still admits an NHIC near double resonance, attached to the NHIC from the single resonance, but it may be destroyed near the saddle.

Non-simple cylinder

For the slow system H^s , it is possible that the cylinder pinches at the saddle. This picture will be destroyed by small perturbation.

Figure: Non-simple cylinder

Simple cylinders

Let γ be a homoclinic orbit to the saddle for the slow system. Let γ^- be the time reversal of γ . Then there exists a normally hyperbolic invariant manifold containing both γ and γ^- . This cylinder persists under perturbation. (Shil'nikov, Shil'nikov Tureav, Bolotin-Rabinowitz)

Simple cylinders associated to a non-simple one

Figure: Kissing property

∃ >

Diffusion across a double resonance

Figure: Diffusion using a simple cylinder

< 口 > < 同

3

< ∃ >

Dense orbit?

Conjecture (M. Herman)

Does there exist an example of nearly integrable Hamiltonian system, such that there exists a dense orbit?

 ω_1

Property of a positive measure set of orbits

Conjecture (Féjoz-Guàdia-Kaloshin-Roldán)

For the a priori unstable version of the Arnold example

$$H_{\epsilon} = \frac{1}{2}p^2 + (\cos\theta_1 - 1) + \epsilon f(\theta, p, t),$$

with $\theta \in \mathbb{T}^2$, $p \in \mathbb{R}^2$, $t \in \mathbb{T}$. Then there exists c > 0, C > 0 such that

$$Leb\left\{(\theta(0), p(0)) : \sup_{0 \le T \le C |\ln \epsilon|/\epsilon} \|p(0) - p(T)\| > 1\right\} > c.$$

has positive measure.