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Origin of the study: the solar system

I

Solar system =
∏

(Sun-planet) + (interactions).

This is an example of nearly integrable systems.

Figure: Solar system
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Nearly integrable systems

I Action-angle coordinates:

Hε(θ, p) = H0(p) + εH1(θ, p), θ ∈ Tm, p ∈ Rm.

I Equations of motion:{
θ̇ = ∂pH0(p) +O(ε)

ṗ = O(ε)
.

I The energy surface {Hε = E} is invariant. There is a reduction
to a time-periodic system

Hε(θ, p, t) = H0(p) + εH1(θ, p, t), θ ∈ Tn, p ∈ Rn,

where n = m− 1. The system has n1
2 degrees of freedom.
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Non-integrability
Theorem (Poincaré)
The planar three-body problem is not integrable.

Figure: Homoclinic tangles
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Nearly integrable systems are not ergodic

Question
Ergodic hypothesis?

Theorem (Kolmogorov-Arnold-Moser)
For a nearly integrable system withm degrees of freedom, a nearly
full measure set of the phase space is Vlled withm−dimensional
invariant tori. Each invariant torus is

√
ε−close (and diUeomorphic)

to
Tm × {p = p0}.

(The p variable is stable).
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KAM tori (picture)

Figure: KAM tori for the standard map
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Resonances and KAM

I Consider the time periodic system Hε(θ, p, t) from now on.

I DeVne ω(p) = ∂pH0(p), we call it the frequency.

θ̇ = ω(p) +O(ε).

I A frequency ω ∈ Tn admits a resonance if there exists k ∈ Zn+1

with
k · (ω, 1) = 0.

I KAM theorem applies to “very non-resonant” vectors.
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Quasi-ergodic hypothesis

Figure: Resonances

Question
Is there a dense orbit (for a generic system)?
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Arnold diUusion

Conjecture (Arnold 1963)
For a “typical” nearly integrable system, there is topological
instability when the KAM tori do not divide the phase space (n ≥ 2).
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Main results

Theorem
For a typical Hε = H0 + εH1 with n ≥ 2, there exists an orbit
(θε(t), pε(t)) and Tε > 0 such that

‖pε(Tε)− pε(0)‖ > l(H1) > 0.

(Bernard, Kaloshin, Z, preprint)
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Main results, cont.

Theorem
For a given γ > 0, for a typical Hε with n = 2, there exists a
γ−dense orbit.
(Kaloshin, Z, preprint)

Remark
This theorem was announced by J. Mather (2003). We provide an
alternative approach.
This theorem does not imply existence of a dense orbit. As γ → 0, the
parameter ε→ 0.
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Path of diUusion

single 
resonance

double resonance

Figure: DiUusion path
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DiUusion picture

Figure: Numeric simulation by Guzzo, Lega and Froeschlé
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The Arnold mechanism
I System:

H(θ1, θ2, p1, p2, t) =
1

2
p2+ε(cos θ1−1)−εµ(cos θ1−1)f(θ2, t).

I For µ = 0, the system is a product of pendulum-rotator.

Figure: Pendulum × rotator
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Arnold mechanism: picture

Figure: Arnold mechanism

DiUusion orbit follows the invariant cylinder {p1 = θ1 = 0}, p1 stays
close to 0, p2 slowly increases.
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Shadowing a transition chain

Figure: Lambda lemma
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Mather mechanism
Theorem (Mather 1991)
The only obstruction to diUusion in a 11

2 degrees of freedom system is
the existence of invariant tori.

Diffusion orbit

Figure: Mather mechanism
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NHIC near a single resonance

I Near the single resonance (1, 0, 0) · (ω1, ω2, 1) = 0, the system
takes the normal form

H0(θ, p, t) = H0(p) + εZ(θ1, p) +O(εδ).

I (Bernard, Kaloshin, Z) There exists a normally hyperbolic
invariant cylinder along a single resonance, away from double
resonances.
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DiUusion along a single resonance

Use Arnold mechanism when there is 
an invariant torus on the NHIC

Use Mather mechanism
when there is not

Figure: DiUusion along a single resonance

Bernard, Cheng-Yan, Bernard-Kaloshin-Z.
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The role of the double resonance

Photo by ruXn_ready at Wickr.
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The slow mechanical system

I The system near a double resonance can be rescaled into the
following form:

Hs
ε (θ, I, τ) = const+K(I)− U(θ) +

√
εP (θ, I, τ),

θ ∈ T2, I ∈ R2, τ ∈
√
εT.

I Generically, the system Hs = K(I)− U(θ) admits a
four-dimensional saddle at I = 0, θ = θ0, where
U(θ0) = minU . We assume all its eigenvalues are distinct.

I Generically, the system Hε still admits an NHIC near double
resonance, attached to the NHIC from the single resonance, but
it may be destroyed near the saddle.
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Non-simple cylinder

For the slow system Hs, it is possible that the cylinder pinches at the
saddle. This picture will be destroyed by small perturbation.

cylinder connected to 
single resonance

The slow 
mechanical 
system

cylinder pinches
at the saddle

Figure: Non-simple cylinder
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Simple cylinders
Let γ be a homoclinic orbit to the saddle for the slow system. Let γ−

be the time reversal of γ. Then there exists a normally hyperbolic
invariant manifold containing both γ and γ−. This cylinder persists
under perturbation. (Shil’nikov, Shil’nikov Tureav,
Bolotin-Rabinowitz)

Figure: Simple cylinder
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Simple cylinders associated to a non-simple one

Figure: Kissing property
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DiUusion across a double resonance

Figure: DiUusion using a simple cylinder
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Dense orbit?

Conjecture (M. Herman)
Does there exist an example of nearly integrable Hamiltonian system,
such that there exists a dense orbit?
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Property of a positive measure set of orbits

Conjecture (Féjoz-Guàdia-Kaloshin-Roldán)
For the a priori unstable version of the Arnold example

Hε =
1

2
p2 + (cos θ1 − 1) + εf(θ, p, t),

with θ ∈ T2, p ∈ R2, t ∈ T. Then there exists c > 0, C > 0 such that

Leb

{
(θ(0), p(0)) : sup

0≤T≤C| ln ε|/ε
‖p(0)− p(T )‖ > 1

}
> c.

has positive measure.
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