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Upon compression (exhalation) the lung surfactants produce a 
near zero surface tension that reduce the pressure 
difference between the smaller alveoli and the airways

Laplace Pressure:    ΔP ~ γ/R  (R, radius of the alveolus)

Lung Surfactants and Lung 
Physiology
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The Engineering Approach
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Composition of lung surfactants
•Phospholipids ~ 85-90%

•Mainly phostphatidyl cholines (zwitterionic), and particularly dipalmitoyl 
phosphatidyl cholines (DPPC) to give solid-like properties.   

•Phosphatidyl glycerols (anionic) that impart appropriate dynamic 
folding/unfolding properties to the surfactant film  

•Neutral Lipids ~ 1-5% (cholesterol)

•Proteins ~ 5-10%
•Surfactant Proteins A and D => anionic, hydrophilic
•Surfactant Proteins B and C => cationic, hydrophobic
•Surfactant Protein B is essential



Wilhelmy Balance

Surfactant Evaluation => 
Compression isotherms

Surface pressure = surface tension of 
the pure liquid (γ0)- surface tension (γ)

“Ideal gas”

“condensed”

“solid”

“film collapse”

Molecular area = 1/surface 
concentration=1/Γ

Elasticity 
ε=dγ/dln(A) 
= -dπ/dln(A)



Evaluation of Surfactant Dynamics

Captive Bubble Pendant Drop Constrain Sessile Drop



7

0.7

0.8

0.9

1

0 0.5 1 1.5 2
normalized time, t/cycle period

R
el

at
iv

e 
ar

ea
 A

/A
o

0
5

10
15
20
25

30
35

0 0.5 1 1.5 2

Normalized time, t/cycle period

S
ur

fa
ce

 te
ns

io
n,

 m
J/

m
^2

3 s/cycle

10 s/cycle

Dynamic Evaluation => adsorption 
and relaxation effects

AdsorptionAdsorption

Relaxation

Adsorption and relaxation 
effects depend on:

Compression dynamics

Environment

Surfactant composition
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Compression Relaxation Model

γeq      Equilibrium surface tension 
γmin,c    Minimum surface tension at collapse 
ka, kr  First order adsorption and relaxation constants
εc, εe   Elasticity during compression and expansion
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Compression Relaxation Model

Formulation εc, 
mJ/m2

εe, 
mJ/m2

ka, s-

1

kr, 
s-1

γmin, 
mJ/m2

γeq, 
mJ/m2

BLES 120 130 2.5 0.0 2 22
BLES-albumin 72 78 1.5 2.5 20 25
Formulation εc, 

mJ/m2

εe, 
mJ/m2

ka, s-

1

kr, 
s-1

γmin, 
mJ/m2

γeq, 
mJ/m2

Parameters for specific scenarios

Typical fit of CRM model
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CRM  parameters: 
γeq, γmin,c, ka, kr , εc, 
εe
γ =f(A, t)

Prokop et al. (1999) 

A =f(V, γ)

Smith et al. (1986)   

P =Ptissue(V) +Pcapillary (γ)

Ventilator waveform:
V=f(t)

CRM - Pressure-Volume Model
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Tissue contribution to 
lung pressure
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CRM-PV algorithm
(P)t = 0.027γt + a/(b-Vt) 

At = 0.0324Vt + 1.734 - 0.707γt
0.366

Vt+δt  from ventilation function

γa = γt    

At +δt= 0.0324Vt+δt + 1.734 - 0.707γa
0.366

t
AA

dt
dA ttt

t δ
δ −=





 +

( )aeq
tt

k
dt
dA

Adt
d γγεγ −+





=







 If  (dA/dt)t<0, ε= εc , else ε= εe 
If γa < γeq , k=kr, else k=ka    

 γn = γt +(dγ/dt)t δt  
If γn < γmin , γt+δt = γmin, else γt+δt = γn

γt+δt = γa ? 

γa = γ t+δt    

Save γt ,Vt, (P)t , At

no

t > tmax ?

t=  t+δt

yes

no

yes

End
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CRM – PV –rabbit model
CRM-PV prediction –BLES Bachofen et al. (1987) 
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CRM – PV –mice model
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CRM – PV, dynamic properties

CRM-PV prediction of lung elastance (ΔP/ ΔV) – left – and 
experimental values –right  - using variable ventilation

*** low minimum surface tension is not always important ***

Fast surfactant adsorption is essential
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Conclusions

1 – In vitro – in vivo correlations are closer to reality => 
integrated approach to design surfactant therapies  

2 – Much to be learned of the physics of surfactant 
membranes at the molecular scale

3 – A combination of strategies: surfactant additives, 
method of ventilation may be used in alternative therapies

4 – Need to introduce flow-driven pressure drop

5 – Need to incorporate surfactant spreading
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air

water

Surfactant membrane 
conformations
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Compression Relaxation Model

% Area reduction (compression)

Elasticity slightly improves with 
surfactant concentration
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Compression Relaxation Model

% Area reduction (compression)

Relaxation constant is not a function of 
surfactant concentration
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Compression Relaxation Model

% Area reduction (compression)

Adsorption constant tends to increase 
with surfactant concentration

BLES 2 mg/ml BLES 27 mg/ml



22

Cationic Surfactant Additives

Reasoning:

Cationic additives can be use 
to induce flocculation and 
larger, more active, surfactant 
aggregates

SP-B, a cationic protein, is 
essential to life

The anionic headgroup of  
phosphatidyl glycerols seems 
to easily hydrate, weakening 
the  surfactant film

+ + + + +

+

+

+

Anchors

Air 

Liquid

NH3
+

Chitosan 



23

Effect of Chitosan on BLES

Addition of chitosan, up to a certain ratio, induce larger 
aggregates to form,  also improving the surface activity  

Optimal 
molar ratio 
of number 
of cationic 
groups in 
polymer to 
anionic 
groups in 
lipids
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Cationic surfactant additives can improve the elasticity of 
exogenous surfactant and reduce the relaxation constant  
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Cationic additives may be the 
answer to ARDS
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Optimized BLES + Chitosan
BLES only

550 μl/ml serum simulates the high protein content in  the 
lungs of ARDS patients. Even a high exogenous surfactant 
concentration ~ 27 mg/ml BLES would not work
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2mg/ml BLES +additive
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