（Bayesian）Statistics with Rankings

Marina Meilă
University of Washington
www．stat．washington．edu／mmp

with Alnur Ali，Harr Chen，Bhushan Mandhani，Le Bao，Kapil Phadnis，Artur Patterson，Brendan Murphy，Jeff Bilmes

Permutations (rankings) data represents preferences

Burger preferences $n=6, N=600$

```
med-rare med rare ...
```

done med-done med ...
med-rare rare med ...

Elections Ireland, $n=5, N=1100$

Roch Scal McAl Bano Nall
Scal McAl Nall Bano Roch
Roch McAl

College programs $n=533, N=53737, t=10$
DC116 DC114 DC111 DC148 DB512 DN021 LM054 WD048 LMO20 LM050 WD028
DN008 TR071 DN012 DN052
FT491 FT353 FT471 FT541 FT402 FT404 TR004 FT351 FT110 FT352
Ranking data

- discrete
- many valued
- combinatorial structure

The Consensus Ranking problem

Given a set of rankings $\left\{\pi_{1}, \pi_{2}, \ldots \pi_{N}\right\} \subset \mathbb{S}_{n}$ find the consensus ranking (or central ranking) π_{0} that best agrees with the data

```
Elections Ireland, \(n=5, N=1100\)
    Roch Scal McAl Bano Nall
    Scal McAl Nall Bano Roch
    Roch McAl
Consensus \(=[\) Roch Scal McAl Bano Nall \(]\) ?
```


The Consensus Ranking problem

Problem (also called Preference Aggregation, Kemeny Ranking) Given a set of rankings $\left\{\pi_{1}, \pi_{2}, \ldots \pi_{N}\right\} \subset \mathbb{S}_{n}$ find the consensus ranking (or central ranking) π_{0} such that

$$
\pi_{0}=\underset{\mathbb{S}_{n}}{\operatorname{argmin}} \sum_{i=1}^{N} d\left(\pi_{i}, \pi_{0}\right)
$$

for $d=$ inversion distance / Kendall τ-distance / "bubble sort" distance

The Consensus Ranking problem

Problem (also called Preference Aggregation, Kemeny Ranking) Given a set of rankings $\left\{\pi_{1}, \pi_{2}, \ldots \pi_{N}\right\} \subset \mathbb{S}_{n}$ find the consensus ranking (or central ranking) π_{0} such that

$$
\pi_{0}=\underset{\mathbb{S}_{n}}{\operatorname{argmin}} \sum_{i=1}^{N} d\left(\pi_{i}, \pi_{0}\right)
$$

for $d=$ inversion distance / Kendall τ-distance / "bubble sort" distance Relevance

- voting in elections (APA, Ireland, Cambridge), panels of experts (admissions, hiring, grant funding)
- aggregating user preferences (economics, marketing)
- subproblem of other problems (building a good search engine: leaning to rank [Cohen, Schapire,Singer 99])
Equivalent to finding the "mean" or "median" of a set of points

The Consensus Ranking problem

Problem (also called Preference Aggregation, Kemeny Ranking) Given a set of rankings $\left\{\pi_{1}, \pi_{2}, \ldots \pi_{N}\right\} \subset \mathbb{S}_{n}$ find the consensus ranking (or central ranking) π_{0} such that

$$
\pi_{0}=\underset{\mathbb{S}_{n}}{\operatorname{argmin}} \sum_{i=1}^{N} d\left(\pi_{i}, \pi_{0}\right)
$$

for $d=$ inversion distance / Kendall τ-distance / "bubble sort" distance Relevance

- voting in elections (APA, Ireland, Cambridge), panels of experts (admissions, hiring, grant funding)
- aggregating user preferences (economics, marketing)
- subproblem of other problems (building a good search engine: leaning to rank [Cohen, Schapire,Singer 99])
Equivalent to finding the "mean" or "median" of a set of points
Fact: Consensus ranking for the inversion distance is NP hard

Consensus ranking problem

$$
\pi_{0}=\underset{\mathbb{S}_{n}}{\operatorname{argmin}} \sum_{i=1}^{N} d\left(\pi_{i}, \pi_{0}\right)
$$

This talk

Will generalize the problem

- from finding π_{0}
to estimating statistical model
Will generalize the data
- From complete, finite permutations
to top-t rankings, countably many items $(n \rightarrow \infty) \ldots$

Outline

(1) Statistical models for permutations and the dependence of ranks
(2) Codes, inversion distance and the precedence matrix
(3) Mallows models over permutations
a Maximum Likelihood estimation

- The Likelihood
- A Branch and Bound Algorithm
- Related work, experimental comparisons
- Mallows and GM and other statistical models
(5) Top-t rankings and infinite permutations
(C) Statistical results
- Bayesian Estimation, conjugate prior, Dirichlet process mixtures
(7) Conclusions

Some notation

Base set $\{a, b, c, d\}$ contains n items (or alternatives)
E.g \{ rare, med-rare, med, med-done, $\ldots\}$
$\mathbb{S}_{n}=$ the symmetric group $=$ the set of all permutations over n items
$\pi=[c a b d] \in \mathbb{S}_{n}$ a permutation/ranking
$\pi=[c a]$ a top-t ranking (is a partial order)
$t=|\pi| \leq n$ the length of π

We observe
data $\pi_{1}, \pi_{2}, \ldots, \pi_{N} \sim$ sampled independently from distribution P over \mathbb{S}_{n} (where P is unknown)

Representations for permutations

reference permutation id $=[a b c d]$

Representations for permutations

reference permutation id $=[a b c d]$

Thurstone：Ranking by utility

The Thurstone Model
－item j has expected utility μ_{j}
－sample $u_{j}=\mu_{j}+\epsilon_{j}, j=1: n$（independently or not）
u_{j} is the actual utility of item j
－sort $\left(u_{j}\right)_{j=1: n}$ to obtain a π

Thurstone: Ranking by utility

The Thurstone Model

- item j has expected utility μ_{j}
- sample $u_{j}=\mu_{j}+\epsilon_{j}, j=1: n$ (independently or not)
u_{j} is the actual utility of item j
- sort $\left(u_{j}\right)_{j=1: n}$ to obtain a π
- rich model class
- typically $\epsilon_{j} \sim \operatorname{Normal}\left(0, \sigma_{j}^{2}\right)$
- parameters interpretable
- some simple probability calculations are intractable
- $P[a \prec b]]$ tractable, $P[i$ in first place tractable
- P [i in 85 th place $]$ intractable
- each rank of π depends on all the ϵ_{j}

Plackett-Luce: Ranking as drawing without replacement

The Plackett-Luce model

- item j has weight $w_{j}>0$

$$
P([a, b, \ldots]) \propto \frac{w_{a}}{\sum_{i^{\prime}} w_{i^{\prime}}} \frac{w_{b}}{\sum_{i^{\prime}} w_{i^{\prime}}-w_{a}} \cdots
$$

- items are drawn "without replacement" from distribution ($w_{1}, w_{2} \ldots w_{n}$) (Markov chain)
- normalization constant Z generally not known
- distribution of first ranks approximately independent
- item at rank j depends on all previous ranks

Bradley－Terry：penalizing inversions

The Bradley－Terry model

$$
P(\pi) \propto \exp \left(-\sum_{i<j} \alpha_{i j} Q_{i j}(\pi)\right)
$$

－exponential family model
－one parameter for every pair $) i, j$ ）
－$\alpha_{i j}$ is penalty for inverting i with j only qualitative interpretation
－normalization constant Z generally not known
－transitivity $i \prec j, j \prec k \Longrightarrow i \prec k$ therefore the sufficient statistics $Q_{i j}$ are dependent

Bradley-Terry: penalizing inversions

The Bradley-Terry model

$$
P(\pi) \propto \exp \left(-\sum_{i<j} \alpha_{i j} Q_{i j}(\pi)\right)
$$

- exponential family model
- one parameter for every pair $) i, j$)
- $\alpha_{i j}$ is penalty for inverting i with j only qualitative interpretation
- normalization constant Z generally not known
- transitivity $i \prec j, j \prec k \Longrightarrow i \prec k$ therefore the sufficient statistics $Q_{i j}$ are dependent
- Mallows models
- are a subclass of Bradley-Terry models
- do not suffer from this dependence
- coming next. .

Outline

(1) Statistical models for permutations and the dependence of ranks
(2) Codes, inversion distance and the precedence matrix
(3) Mallows models over permutations
(4) Maximum Likelihood estimation

- The Likelihood
- A Branch and Bound Algorithm
- Related work, experimental comparisons
- Mallows and GM and other statistical models
(5) Top-t rankings and infinite permutations

6 Statistical results

- Bayesian Estimation, conjugate prior, Dirichlet process mixtures
(7) Conclusions

The precedence matrix Q

$$
\begin{gathered}
\pi=[c a b d] \\
Q(\pi)=\begin{array}{c|c|c|c|c}
a & b & c & d & \\
\hline- & 1 & 0 & 1 & a \\
0 & - & 0 & 1 & b \\
1 & 1 & - & 1 & c \\
0 & 0 & 0 & - & d \\
\hline
\end{array} \\
Q_{i j}(\pi)=1 \text { iff } i \text { before } j \text { in } \pi \\
Q_{i j}=1-Q_{j i}
\end{gathered}
$$

reference permutation $\mathrm{id}=[a b c d]$: determines the order of rows, columns in Q

The number of inversions and Q

$$
\begin{gathered}
\pi=[c a b d] \\
Q(\pi)=\begin{array}{|c|c|c|c|c}
a & b & c & d & \\
\hline- & 1 & 0 & 1 & a \\
0 & - & 0 & 1 & b \\
1 & 1 & - & 1 & c \\
0 & 0 & 0 & - & d \\
\hline
\end{array}
\end{gathered}
$$

define

- $L(Q)=\sum_{i>j} Q_{i j}=$ sum $($ lower triangle $(Q))$

The number of inversions and Q

$$
\begin{gathered}
\pi=[c a b d] \\
Q(\pi)=\begin{array}{|c|c|c|c|c}
a & b & c & d & \\
\hline- & 1 & 0 & 1 & a \\
0 & - & 0 & 1 & b \\
1 & 1 & - & 1 & c \\
0 & 0 & 0 & - & d \\
\hline
\end{array}
\end{gathered}
$$

define

- $L(Q)=\sum_{i>j} Q_{i j}=\operatorname{sum}($ lower triangle $(Q))$
then
- \#inversions $(\pi)=L(Q)=d(\pi, \mathrm{id})$

The inversion distance and Q

$$
\pi=[c a b d],
$$

Refence permutation
$\mathrm{id}=[a b c d]$

$Q(\pi)$				
a	b	c	d	
－	1	0	1	a
0	－	0	1	b
1	1	－	1	c
0	0	0	－	d
$d(\pi, \mathrm{id})=2$				

Reference permutation
$\pi_{0}=[b a d c]$

$\Pi_{0}^{T} Q(\pi) \Pi_{0}$				
b	a	d	c	
－	0	1	0	b
1	－	1	0	a
0	0	－	0	d
1	1	1	－	c
$d\left(\pi, \pi_{0}\right)=4$				

The inversion distance and Q

To obtain $d\left(\pi, \pi_{0}\right)$
(1) Construct $Q(\pi)$
(2) Sort rows and columns by π_{0}
(3) Sum elements in lower triangle

The inversion distance and Q

To obtain $d\left(\pi, \pi_{0}\right)$
(1) Construct $Q(\pi)$
(2) Sort rows and columns by π_{0}
(3) Sum elements in lower triangle

Note also that
To obtain
$d\left(\pi_{1}, \pi_{0}\right)+d\left(\pi_{2}, \pi_{0}\right)+\ldots$
(1) Construct $Q\left(\pi_{1}\right), Q\left(\pi_{2}\right), \ldots$
(2) Sum
$Q=Q\left(\pi_{1}\right)+Q\left(\pi_{2}\right)+\ldots$
(3) Sort rows and columns of Q by π_{0}
(a) Sum elements in lower triangle of Q

$$
\pi=[c a b d], \quad \pi_{0}=[b a d c]
$$

	b	a	d	c	
	-	0	1	0	b
1	-	1	0	a	
0	0	-	0	d	
	1	1	1	-	c

$$
d\left(\pi, \pi_{0}\right)=4
$$

A decomposition for the inversion distance

$d\left(\pi, \pi_{0}\right)=\#$ inversions between π and π_{0}

$V_{j}=\#$ inversions where $\pi_{0}(j)$ is disfavored

The code of a permutation

Example $\pi=[c a b d], \pi_{0}=[b a d c]$

	a	b	c	d	
S_{2}	-	1	0	1	a
S_{3}	0	-	0	1	b
S_{1}	1	1	-	1	c
S_{4}	0	0	0	-	d
	V_{1}	V_{2}	V_{3}	V_{4}	

code

$$
\left(V_{1}, V_{2}, V_{3}\right)=(1,1,0)
$$

The code of a permutation

Example $\pi=[c a b d], \pi_{0}=[b a d c]$

	a	b	c	d	
S_{2}	-	1	0	1	a
S_{3}	0	-	0	1	b
S_{1}	1	1	-	1	c
S_{4}	0	0	0	-	d
	V_{1}	V_{2}	V_{3}	V_{4}	

code

$$
\left(V_{1}, V_{2}, V_{3}\right)=(1,1,0)
$$

or

$$
\begin{gathered}
\left(S_{1}, S_{2}, S_{3}\right)=(2,0,0) \\
d(\pi, \mathrm{id})=2
\end{gathered}
$$

The code of a permutation

Example $\pi=[c a b d], \pi_{0}=[b a d c]$
Codes are defined w.r.t any π_{0}

	a	b	c	d	
S_{2}	-	1	0	1	a
S_{3}	0	-	0	1	b
S_{1}	1	1	-	1	c
S_{4}	0	0	0	-	d
	V_{1}	V_{2}	V_{3}	V_{4}	

code

$$
\left(V_{1}, V_{2}, V_{3}\right)=(1,1,0)
$$

or

$$
\begin{gathered}
\left(S_{1}, S_{2}, S_{3}\right)=(2,0,0) \\
d(\pi, \mathrm{id})=2
\end{gathered}
$$

code $V_{j}\left(\pi \mid \pi_{0}\right), S_{j}\left(\pi \mid \pi_{0}\right)$
$\left(V_{1}, V_{2}, V_{3}\right)=(2,1,1)$

The code of a permutation

Example $\pi=[c a b d], \pi_{0}=[b a d c]$
Codes are defined w.r.t any π_{0}

	a	b	c	d	
S_{2}	-	1	0	1	a
S_{3}	0	-	0	1	b
S_{1}	1	1	-	1	c
S_{4}	0	0	0	-	d
	V_{1}	V_{2}	V_{3}	V_{4}	

code

$$
\left(V_{1}, V_{2}, V_{3}\right)=(1,1,0)
$$

or

$$
\begin{gathered}
\left(S_{1}, S_{2}, S_{3}\right)=(2,0,0) \\
d(\pi, \mathrm{id})=2
\end{gathered}
$$

$$
\left(S_{1}, S_{2}, S_{3}\right)=(3,1,0)
$$

$$
d\left(\pi, \pi_{0}\right)=4
$$

Codes and inversion distance summary

Inversion distance facts

- $d\left(\pi, \pi_{0}\right)=\sum_{j} V_{j}\left(\pi \mid \pi_{0}\right)=\sum_{j} S_{j}\left(\pi \mid \pi_{0}\right)$

Codes and inversion distance summary

Inversion distance facts

- $d\left(\pi, \pi_{0}\right)=\sum_{j} V_{j}\left(\pi \mid \pi_{0}\right)=\sum_{j} S_{j}\left(\pi \mid \pi_{0}\right)$
- $d\left(\pi, \pi_{0}\right)=L\left(\Pi_{0}^{T} Q(\pi) \Pi_{0}\right) \stackrel{\text { def }}{=} L_{\pi_{0}}(Q(\pi))$

Codes facts

- $\left(V_{1: n-1}\right)$ or $\left(S_{1: n-1}\right)$ defined w.r.t any reference permutation
- we denote them $V_{j}\left(\pi \mid \pi_{0}\right)$ or $S_{j}\left(\pi \mid \pi_{0}\right)$

Codes and inversion distance summary

Inversion distance facts

- $d\left(\pi, \pi_{0}\right)=\sum_{j} V_{j}\left(\pi \mid \pi_{0}\right)=\sum_{j} S_{j}\left(\pi \mid \pi_{0}\right)$
- $d\left(\pi, \pi_{0}\right)=L\left(\Pi_{0}^{T} Q(\pi) \Pi_{0}\right) \stackrel{\text { def }}{=} L_{\pi_{0}}(Q(\pi))$

Codes facts

- $\left(V_{1: n-1}\right)$ or $\left(S_{1: n-1}\right)$ defined w.r.t any reference permutation
- we denote them $V_{j}\left(\pi \mid \pi_{0}\right)$ or $S_{j}\left(\pi \mid \pi_{0}\right)$
- $\left(V_{1: n-1}\right)$ or $\left(S_{1: n-1}\right)$ uniquely represent π
- with $n-1$ independent parameters

	b	a	d	c	
S_{3}	-	0	1	0	b
S_{2}	1	-	1	0	a
S_{4}	0	0	-	0	d
S_{1}	1	1	1	-	c
	V_{1}	V_{2}	V_{3}	V_{4}	

$$
\begin{aligned}
& \left(V_{1}, V_{2}, V_{3}\right)=(2,1,1) \\
& \left(S_{1}, S_{2}, S_{3}\right)=(3,1,0)
\end{aligned}
$$

The Mallows Model

- The Mallows model is a distribution over \mathbb{S}_{n} defined by

$$
P_{\pi_{0}, \theta}(\pi)=\frac{1}{Z(\theta)} e^{-\theta d\left(\pi, \pi_{0}\right)}
$$

- π_{0} is the central permutation
- π_{0} mode of $P_{\pi_{0}, \theta}$, unique if $\theta>0$
- $\theta \geq 0$ is a dispersion parameter
- for $\theta=0, P_{\pi_{0}, 0}$ is uniform over \mathbb{S}_{n}

The Mallows Model

- The Mallows model is a distribution over \mathbb{S}_{n} defined by

$$
P_{\pi_{0}, \theta}(\pi)=\frac{1}{Z(\theta)} e^{-\theta d\left(\pi, \pi_{0}\right)}
$$

- π_{0} is the central permutation
- π_{0} mode of $P_{\pi_{0}, \theta}$, unique if $\theta>0$
- $\theta \geq 0$ is a dispersion parameter
- for $\theta=0, P_{\pi_{0}, 0}$ is uniform over \mathbb{S}_{n}
- $d\left(\pi, \pi_{0}\right)=\sum_{j} V_{j}\left(\pi \mid \pi_{0}\right)$ therefore $P_{\pi_{0}, \theta}$ is product of $P_{\theta}\left(V_{j}\left(\pi \mid \pi_{0}\right)\right.$

$$
P_{\pi_{0}, \theta}(\pi)=\frac{1}{Z(\theta)} \prod_{j=1}^{n-1} e^{-\theta V_{j}\left(\pi \mid \pi_{0}\right)} \text { and } Z(\theta)=\prod_{j=1}^{n-1} \underbrace{\frac{1-e^{-\theta(n-j+1)}}{1-e^{-\theta}}}_{Z_{j}(\theta)}
$$

The Generalized Mallows (GM) Model [Fligner, Verducci 86]

Mallows model $P_{\pi_{0}, \theta}(\pi)=\frac{1}{z_{\theta}} \exp \left(-\theta \sum_{j=1}^{n-1} V_{j}\left(\pi \mid \pi_{0}\right)\right)$
Idea: $\theta \rightarrow \vec{\theta}=\left(\theta_{1}, \theta_{2}, \ldots \theta_{n-1}\right)$ Generalized Mallows(GM) model

$$
P_{\pi_{0}, \vec{\theta}}(\pi)=\frac{1}{Z(\vec{\theta})} \prod_{j=1}^{n-1} e^{-\theta_{j} V_{j}\left(\pi \mid \pi_{0}\right)} \quad \text { with } \quad Z(\vec{\theta})=\prod_{j=1}^{n-1} Z_{j}\left(\theta_{j}\right)
$$

The Generalized Mallows (GM) Model [Fligner, Verducci 86]

Mallows model $P_{\pi_{0}, \theta}(\pi)=\frac{1}{z_{\theta}} \exp \left(-\theta \sum_{j=1}^{n-1} V_{j}\left(\pi \mid \pi_{0}\right)\right)$
Idea: $\theta \rightarrow \vec{\theta}=\left(\theta_{1}, \theta_{2}, \ldots \theta_{n-1}\right)$
Generalized Mallows(GM) model

$$
P_{\pi_{0}, \vec{\theta}}(\pi)=\frac{1}{Z(\vec{\theta})} \prod_{j=1}^{n-1} e^{-\theta_{j} V_{j}\left(\pi \mid \pi_{0}\right)} \quad \text { with } \quad Z(\vec{\theta})=\prod_{j=1}^{n-1} Z_{j}\left(\theta_{j}\right)
$$

Similar definitions with S_{j} instead of V_{j} : models denoted $G M^{V}, G M^{S}$

The Generalized Mallows (GM) Model [Fligner, Verducci 86]

Mallows model $P_{\pi_{0}, \theta}(\pi)=\frac{1}{z_{\theta}} \exp \left(-\theta \sum_{j=1}^{n-1} V_{j}\left(\pi \mid \pi_{0}\right)\right)$
Idea: $\theta \rightarrow \vec{\theta}=\left(\theta_{1}, \theta_{2}, \ldots \theta_{n-1}\right)$
Generalized Mallows(GM) model

$$
P_{\pi_{0}, \vec{\theta}}(\pi)=\frac{1}{Z(\vec{\theta})} \prod_{j=1}^{n-1} e^{-\theta_{j} V_{j}\left(\pi \mid \pi_{0}\right)} \quad \text { with } \quad Z(\vec{\theta})=\prod_{j=1}^{n-1} Z_{j}\left(\theta_{j}\right)
$$

Similar definitions with S_{j} instead of V_{j} : models denoted $G M^{V}, G M^{S}$ Cost interpretation of the GM models

- $G M^{V}$: Cost $=\sum_{j} \theta_{j} V_{j}$
pay price θ_{j} for every inversion w.r.t item j
- $G M^{S}:$ Cost $=\sum_{j} \theta j S_{j}$
pay price θ_{j} for every inversion in picking rank j
- Assume stepwise construction of π : θ_{j} represents importance of step j

Outline

（1）Statistical models for permutations and the dependence of ranks
－Codes，inversion distance and the precedence matrix
（3）Mallows models over permutations
4 Maximum Likelihood estimation
－The Likelihood
－A Branch and Bound Algorithm
－Related work，experimental comparisons
－Mallows and GM and other statistical models
（3）Top－t rankings and infinite permutations
（6）Statistical results
－Bayesian Estimation，conjugate prior，Dirichlet process mixtures
（7）Conclusions

The (Max Likelihood) estimation problem

```
Burger preferences }n=6,N=60
med-rare med rare ...
done med-done med ...
med-rare rare med ...
```

- Data $\left\{\pi_{i}\right\}_{i=1: N}$ i.i.d. sample from \mathbb{S}_{n}
- Model Mallows $P_{\pi_{0}, \theta}$ or GM $P_{\pi_{0}, \vec{\theta}}$
- Parameter estimation: π_{0} known, estimate θ or $\vec{\theta}$. This problem is easy (convex, univariate)
- Central permutation estimation: $\vec{\theta}$ known, estimate π_{0} Known as Consensus ranking if $\theta=1$ (\approx MinFAS)
This problem is NP hard. (many heuristic/approx. algorithms exist)
- General estimation: estimate both π_{0} and θ or $\vec{\theta}$. ...at least as hard as consensus ranking. Will show it's no harder.

The likelihood

－Likelihood of $\pi_{0}, \theta=\mathrm{P}\left[\right.$ data $\left.\mid \pi_{0}, \theta\right]$
－Max Likelihood estimation $\pi_{0}{ }^{*}, \theta^{*}=\operatorname{argmax} \mathrm{P}\left[\right.$ data $\left.\mid \pi_{0}, \theta\right]$
Mallows

$$
\log I\left(\theta, \pi_{0}\right)=\frac{1}{N} \ln P\left(\pi_{1: N} ; \theta, \pi_{0}\right)=-\theta \sum_{j=1}^{n-1} \frac{\sum_{i=1}^{N} V_{j}\left(\pi_{\mid} \pi_{0}\right)}{N}+\sum_{j=1}^{n-1} \ln Z_{j}(\theta)
$$

Generalized Mallows

$$
\log I\left(\theta, \pi_{0}\right)=\frac{1}{N} \ln P\left(\pi_{1: N} ; \theta, \pi_{0}\right)=-\sum_{j=1}^{n-1}[\theta_{j} \overbrace{\frac{\sum_{i=1}^{N} V_{j}\left(\pi_{i} \mid \pi_{0}\right)}{N}}^{N}+\ln Z_{j}\left(\theta_{j}\right)]
$$

The likelihood

- Likelihood of $\pi_{0}, \theta=\mathrm{P}\left[\right.$ data $\left.\mid \pi_{0}, \theta\right]$
- Max Likelihood estimation $\pi_{0}{ }^{*}, \theta^{*}=\operatorname{argmax} \mathrm{P}\left[\right.$ data $\left.\mid \pi_{0}, \theta\right]$

Mallows

$$
\log I\left(\theta, \pi_{0}\right)=\frac{1}{N} \ln P\left(\pi_{1: N} ; \theta, \pi_{0}\right)=-\theta \sum_{j=1}^{n-1} \frac{\sum_{i=1}^{N} V_{j}\left(\pi_{\mid} \pi_{0}\right)}{N}+\sum_{j=1}^{n-1} \ln Z_{j}(\theta)
$$

Generalized Mallows

$$
\log \left(\theta, \pi_{0}\right)=\frac{1}{N} \ln P\left(\pi_{1: N} ; \theta, \pi_{0}\right)=-\sum_{j=1}^{n-1}[\theta_{j} \overbrace{\frac{\sum_{i=1}^{N} V_{j}\left(\pi_{i} \mid \pi_{0}\right)}{N}}+\ln Z_{j}\left(\theta_{j}\right)]
$$

- Likelihood is separable and concave in each $\theta_{j} \Longrightarrow$ estimation of θ_{j} is straightforward
- by convex minimization of $\theta_{j} \bar{V}_{j}+\ln Z_{j}\left(\theta_{j}\right)$ (numerical)
- Dependence on π_{0} complicated

ML Estimation of π_{0} : costs and main results

$\pi_{1: N}$ complete rankings $\left(G M^{s}, G M^{V}\right)$
$\pi_{1: t}$ top-t rankings, $N \leq \infty$
(only GM ${ }^{s}$)
$\sum_{j=1}^{t} \frac{\sum_{i} S_{j}\left(\pi \mid \pi_{0}\right)}{N}$
$\sum_{j=1}^{t}\left[\theta_{j} \frac{\sum_{i} S_{j}\left(\pi_{i} \mid \pi_{0}\right)}{N}+\ln Z_{j}\left(\theta_{j}\right)\right]$
[MBao08] $\pi_{0}{ }^{M L}$ can be found exactly by $B \& B$ search on matrix $R\left(\pi_{1: N}\right)$.
[MBao08] A local maximum for $\pi_{0}, \vec{\theta}$ can be found by alternate maximization: $\pi_{0} \mid \vec{\theta}$ by $\mathrm{B} \& \mathrm{~B}$, $\vec{\theta} \mid \pi_{0}$ by convex unidimensional.
$R\left(\pi_{1: N}\right)=\sum_{i=1: N} R\left(\pi_{i}\right)$ (defined nex $B \& B=$ branch-and-bound

- the search may not be tractable

Sufficient statistics (complete permutations) [M\&al07]

-	0	1	0
1	-	1	0
0	0	-	0
1	1	1	-

Q for large samples from Mallows models

$$
\theta=1
$$

$$
\theta=0.3
$$

$$
\theta=0.03
$$

- Define $Q \equiv Q\left(\pi_{1: N}\right)=\frac{1}{N} \sum_{i=1}^{N} Q\left(\pi_{i}\right)$
- Sufficient statistics are sum of preference matrices for data

Search Algorithm Idea

Wanted: $\operatorname{argmin}_{\pi_{0}} \mathrm{~L}\left(\Pi_{0}^{\mathrm{T}} \mathrm{Q} \Pi_{0}\right)=\operatorname{argmin}_{\pi_{0}} \mathrm{~L}_{\pi_{0}}(\mathrm{Q})=\operatorname{argmin}$ lower triangle of Q over all row and column permutations

Search Algorithm Idea

Wanted: $\operatorname{argmin}_{\pi_{0}} \mathrm{~L}\left(\Pi_{0}^{\mathrm{T}} \mathrm{Q} \Pi_{0}\right)=\operatorname{argmin}_{\pi_{0}} \mathrm{~L}_{\pi_{0}}(\mathrm{Q})=\operatorname{argmin}$ lower triangle of Q over all row and column permutations

Search Algorithm Idea

Wanted： $\operatorname{argmin}_{\pi_{0}} \mathrm{~L}\left(\Pi_{0}^{\mathrm{T}} \mathrm{Q} \Pi_{0}\right)=\operatorname{argmin}_{\pi_{0}} \mathrm{~L}_{\pi_{0}}(\mathrm{Q})=\operatorname{argmin}$ lower triangle of Q over all row and column permutations

Search Algorithm Idea

Wanted： $\operatorname{argmin}_{\pi_{0}} \mathrm{~L}\left(\Pi_{0}^{\mathrm{T}} \mathrm{Q} \Pi_{0}\right)=\operatorname{argmin}_{\pi_{0}} \mathrm{~L}_{\pi_{0}}(\mathrm{Q})=\operatorname{argmin}$ lower triangle of Q over all row and column permutations

Search Algorithm Idea

Wanted： $\operatorname{argmin}_{\pi_{0}} \mathrm{~L}\left(\Pi_{0}^{\mathrm{T}} \mathrm{Q} \Pi_{0}\right)=\operatorname{argmin}_{\pi_{0}} \mathrm{~L}_{\pi_{0}}(\mathrm{Q})=\operatorname{argmin}$ lower triangle of Q over all row and column permutations

The Branch－and－Bound Algorithm

$$
\pi_{0}^{-1}=\underset{r_{1}, r_{2}, \ldots r_{n-1}}{\operatorname{argmin}} \sum_{j=1}^{n-1} \bar{V}_{j}\left(r_{j}\right) \quad \begin{gathered}
\text { Total cost of a } \\
\text { permutation }
\end{gathered}
$$

Branch and Bound algorithm

Node ρ stores: r_{j}, parent $, j=|\rho|, V_{j}(\rho), \theta_{j}, C(\rho), L(\rho) ; S=$ priority queue with nodes to be expanded.

Initialize: $S=\left\{\rho_{\emptyset}\right\}, \rho_{\emptyset}=$ the empty sequence, $j=0, C\left(\rho_{\emptyset}\right)=V\left(\rho_{\emptyset}\right)=L\left(\rho_{\emptyset}\right)=0$

Repeat

remove $\rho \in \underset{\rho \in S}{\operatorname{argmin}} L(\rho)$ from S
if $|\rho|=n$ (Return) Output $\rho, L(\rho)=C(\rho)$ and Stop.
else (Expand ρ)
for $r_{j+1} \in[n] \backslash \rho$ create node $\rho^{\prime}=\rho \mid r_{j+1}, V_{j+1}\left(\rho^{\prime}\right)=V_{j}\left(r_{1: j-1}, r_{j+1}\right)-Q_{r_{j} r_{j+1}}$
compute $V^{\text {min }}=\min _{r_{j+1} \in[n] \backslash \rho} V_{j+1}\left(\rho \mid r_{j+1}\right)$
calculate $A(\rho)$ admissible heuristic [MandhaniM09]
for $r_{j+1} \in[n] \backslash \rho$
calculate θ_{j+1} from $\left.n-j-1, V_{j+1}\left(\rho^{\prime}\right)\right)$

$$
C\left(\rho^{\prime}\right)=C(\rho)+\theta_{j+1} V_{j+1}\left(\rho^{\prime}\right), L\left(\rho^{\prime}\right)=C\left(\rho^{\prime}\right)+A(\rho)
$$

$$
\text { store node }\left(\rho^{\prime}, j+1, V_{j+1}, \theta_{j+1}, C\left(\rho^{\prime}\right), L\left(\rho^{\prime}\right)\right) \text { in } S
$$

ML Estimation of π_{0} : costs and main results

$\pi_{1: N}$ complete rankings $\left(G M^{s}, G M^{V}\right)$
$\pi_{1: t}$ top-t rankings, $N \leq \infty$
(only GM ${ }^{s}$)
$\sum_{j=1}^{t} \frac{\sum_{i} S_{j}\left(\pi \mid \pi_{0}\right)}{N}$
$\sum_{j=1}^{t}\left[\theta_{j} \frac{\sum_{i} S_{j}\left(\pi_{i} \mid \pi_{0}\right)}{N}+\ln Z_{j}\left(\theta_{j}\right)\right]$
[MBao08] $\pi_{0}{ }^{M L}$ can be found exactly by $B \& B$ search on matrix $R\left(\pi_{1: N}\right)$.
[MBao08] A local maximum for $\pi_{0}, \vec{\theta}$ can be found by alternate maximization: $\pi_{0} \mid \vec{\theta}$ by $\mathrm{B} \& \mathrm{~B}$, $\vec{\theta} \mid \pi_{0}$ by convex unidimensional.
$R\left(\pi_{1: N}\right)=\sum_{i=1: N} R\left(\pi_{i}\right)$ (defined nex $B \& B=$ branch-and-bound

- the search may not be tractable

Algorithm summary

- Sufficient statistics $=Q\left(\pi_{1: N}\right)$
- $\operatorname{Cost}\left(\pi_{0}, \theta\right)=\theta L_{\pi_{0}}\left(Q\left(\pi_{1: N}\right)\right)$ (lower triangle of Q after permuting rows and columns by π_{0}
- B\&B Algorithm constructs π_{0} one rank at a time
- Exact but not always tractable
- B\&B Algorithms exist also for
- $G M^{S}$
- for multiple parameters $\vec{\theta}$
- Performance issues
- Admissible heuristics help
- Beam search and other approximations possible

What makes the search hard (or tractable)?

Running time $=$ time (compute $Q)+\quad$ time $(B \& B)$ $\mathcal{O}\left(n^{2} N\right) \quad$ independent of N

- Number nodes explored by B\&B
- independent of sample size N
- independent of π_{0}
- depends on dispersion $\vec{\theta}^{M L}$
- $\vec{\theta}=0 \Rightarrow$ uniform distribution
- all branches have equal cost
- $\theta_{1: n-1}^{M L}$ large \Rightarrow likelihood decays fast around $\pi_{0}{ }^{M L} \Rightarrow$ pruning efficient
- Theoretical results
- e.g if $\theta_{j}>T_{j}, j=1: n-1$, then $\mathrm{B} \& \mathrm{~B}$ search defaults to greedy
- Practically
- diagnoses possible during $\mathrm{B} \& \mathrm{~B}$ run

Admissible heuristics

To guarantee optimality we need lower bounds for the cost－to－go（admissible heuristics）
－admissible heuristic for Mallows Model［MPPB07］
－improved heuristic for Mallows model［Mandhani，M 09］，first admissible heuristic for GMM model
－If data $\sim P_{\theta, \pi_{0}}$ with θ large，admissible heuristic A known \Rightarrow number of expanded nodes is bounded above

Related work I

ML Estimation

[FV86] $\vec{\theta}$ estimation; heuristic for π_{0}
FV algorithm/Borda Rule
(1) Compute $\bar{q}_{j}, j=1: n$ column sums of Q
(2) Sort $\left(\bar{q}_{j}\right)_{j=1}^{n}$ in increasing order; π_{0} is sorting permutation

- \bar{q}_{j} are Borda counts
- FV is consistent for infinite N

Related work II

Consensus Ranking ($\theta=1$)
[CSS99] CSS ALGORITHM $=$ greedy search on Q
improved by extracting strongly connected components
[Ailon,Newman,Charikar 05] Randomized algorithm guaranteed 11/7 factor approximation (ANC)
[Mohri, Ailon 08] linear program
[Mathieu, Schudy 07] $(1+\epsilon)$ approximation, time $\mathcal{O}\left(n^{6} / \epsilon+2^{2^{O(1 / \epsilon)}}\right)$
[Davenport,Kalagnanan 03] Heuristics based on edge-disjoint cycles used by our B\&B implementation
[Conitzer,D,K 05] Exact algorithm based on integer programming, better bounds for edge disjoint cycles (DK)
[Betzler,Brandt, 10] Exact problem reductions

- Most of this work based on the MinFAS view

$$
Q_{i j}>.5 \Leftrightarrow \quad i \bullet \xrightarrow{Q_{i j}-5} \bullet j
$$

Prune graph to a DAG removing minimum weight

Related work III

Extensions and applications to social choice

- Inferring rakings under partial and aggregated information [ShahJabatula08], [JabatulaFariasShah10]
- Vote elicitation under probabilistic models of choice [LuBoutillier11]
- Voting rules viewed as Maximum Likelihood [ConitzerSandholm08]
- ...

When is the B\&B search tractable? I

Excess cost w.r.t B\&B; data from Mallows model $n=100, N=100$

hard (uninteresting?) interesting

Running time vs number items n

Data generated from Mallows (θ)

Extensive comparisons

- Experimental setup from [Coppersmith\&al07]. Experiments by Alnur Ali [AliM11]
- Data: artificial (Mallows and Plackett-Luce), Ski, Web-search total 45 data sets, $n=50 \ldots 350, N=4 \ldots 100$ typically
- Algorithms ILP, LP, B\&B (with limited queue), Local Search (LS), FV/Borda, QuickSort (QS), ... and combinations (total 104 algorithms)

Websearch data $B \& B$ is competitive (Local Search, B\&B,other)

Other statistical models on rankings

Several "natural" parametric distributions on \mathbb{S}_{n} exist.

- $P(\pi) \propto \exp \left(-\sum_{j=1}^{n-1} \theta_{j} V_{j}(\pi)\right)$

Generalized Mallows

- $P(\pi) \propto \exp \left(-\sum_{i<j} \alpha_{i j} Q_{i j}(\pi)\right)$

Bradley-Terry

Mallows $\subset G M \subset$ Bradley-Terry

Other statistical models on rankings

Several＂natural＂parametric distributions on \mathbb{S}_{n} exist．
－$P(\pi) \propto \exp \left(-\sum_{j=1}^{n-1} \theta_{j} V_{j}(\pi)\right)$
Generalized Mallows
－$P(\pi) \propto \exp \left(-\sum_{i<j} \alpha_{i j} Q_{i j}(\pi)\right)$
Bradley－Terry

Mallows $\subset G M \subset$ Bradley－Terry
－item j has weight $w_{j}>0$
Plackett－Luce

$$
P([a, b, \ldots]) \propto \frac{w_{a}}{\sum_{i^{\prime}} w_{i^{\prime}}} \frac{w_{b}}{\sum_{i^{\prime}} w_{i^{\prime}}-w_{a}} \cdots
$$

－item j has utility μ_{j}
Thurstone
sample $u_{j}=\mu_{j}+\epsilon_{j}, j=1: n$ independently
sort $\left(u_{j}\right)_{j=1: n} \Rightarrow \pi$

	GM	B-T	P-L	T
Discrete parameter	yes	no	no	no
Tractable Z	yes	no	no	no
"Easy"* param	yes	no	no	Gauss
estimation				
Tractable marginals	yes	no	no	Gauss**
Params "interpretable"	yes	no	no	Gauss

* Refers to continuous parameters
** for top ranks

GM model

- computationally very appealing
- advantage comes from the code: the codes $\left(V_{j}\right),\left(S_{j}\right)$
- discrete parameter makes for challenging statistics

Outline

(1) Statistical models for permutations and the dependence of ranks
(2) Codes, inversion distance and the precedence matrix
(3) Mallows models over permutations
(4) Maximum Likelihood estimation

- The Likelihood
- A Branch and Bound Algorithm
- Related work, experimental comparisons
- Mallows and GM and other statistical models
(5) Top-t rankings and infinite permutations
(6) Statistical results
- Bayesian Estimation, conjugate prior, Dirichlet process mixtures

Top-t rankings and very many items

Elections Ireland, $n=5, N=1100$

Roch Scal McAl Bano Nall
Scal McAl Nall Bano Roch
Roch McAl

College programs $n=533, N=53737, t=10$
DC116 DC114 DC111 DC148 DB512 DN021 LM054 WD048 LM020 LM050
WD028
DN008 TR071 DN012 DN052
FT491 FT353 FT471 FT541 FT402 FT404 TR004 FT351 FT110 FT352

Bing search: UW Statistics $n \rightarrow \infty$

```
www.stat.washington.edu/
www.stat.wisc.edu/
www.stat.washington.edu/courses
collegeprowler.com/university-of-washington/statistics
```


Models for Infinite permutations

- Domain of items to be ranked is countable, i.e $n \rightarrow \infty$
- Observed the top t ranks of an infinite permutation
- Examples
- Bing UW Statistics

```
www.stat.washington.edu/
```

www.stat.wisc.edu/
www.stat.washington.edu/courses
collegeprowler.com/university-of-washington/statistics

- searches in data bases of biological sequences (by e.g Blast, Sequest, etc)
- open-choice polling, "grassroots elections", college program applications
- Mathematically more natural
- for large n, models should not depend on n
- models can be simpler, more elegant than for finite n

Top-t rankings: $G M^{S}, G M^{V}$ are not equivalent

$$
\begin{aligned}
& \pi_{0}=\left[\begin{array}{l}
a b c d] \\
\pi=[c a]
\end{array}\right.
\end{aligned}
$$

$$
\begin{array}{ll}
\pi(1)=c & S_{1}=2 \\
\pi(2)=a & S_{2}=0 \\
\pi(3)=? & S_{3}=?
\end{array}
$$

$$
\begin{array}{ll}
\pi_{0}(1)=a & V_{1}=1 \\
\pi_{0}(2)=b & V_{2} \geq 1 \\
\pi_{0}(3)=c & V_{3}=0
\end{array}
$$

$$
P_{\pi_{0}, \vec{\theta}}(\pi)=\prod_{j=1}^{t} e^{-\theta_{j} S_{j}}
$$

$$
P_{\pi_{0}, \theta}(\pi)=\prod_{j=1}^{n-1}\left\{\begin{array}{l}
e^{-\theta V_{j}}, \pi_{0}(j) \in \pi \\
P_{\theta}\left(V_{j} \geq v_{j}\right), \pi_{0}(j) \notin \pi
\end{array}\right.
$$

sufficient statistics
no sufficient statistics

The Infinite Generalized Mallows Model (IGM) [MBao08]

$$
P_{\pi_{0}, \vec{\theta}}(\pi)=\frac{1}{\prod_{j=1}^{t} Z\left(\theta_{j}\right)} \exp \left[-\sum_{j=1}^{t} \theta_{j} S_{j}\left(\pi \mid \pi_{0}\right)\right]
$$

- distribution over top-t rankings
- π_{0} is permutation of $\{1,2,3, \ldots\}$ a discrete infinite "location" parameter
- $\theta_{1: t}>0$ dispersion parameter
- product of t independent univariate distributions
- Normalization constant $Z\left(\theta_{j}\right)=1 /\left(1-e^{-\theta_{j}}\right)$
- $P_{\pi_{0}, \vec{\theta}}(\pi)$ is well defined marginal over the coset defined by π

IGM versus GM

$$
P_{\pi_{0}, \bar{\theta}}(\pi)=\frac{1}{\prod_{j=1}^{t} Z\left(\theta_{j}\right)} \exp \left[-\sum_{j=1}^{t} \theta_{j} S_{j}\left(\pi \mid \pi_{0}\right)\right]
$$

- all S_{j} have same range $\{0,1,2, \ldots\}$
- Z has simpler formula
- only top-t rankings observed

Sufficient statistics for top-t permutations [MBao09]

Sufficient statistics are $t n \times n$ precedence matrices $R_{1}, \ldots R_{t}$ Lemma

\[

\]

- $\left(R_{j}\right)_{k l}=1$ iff item k at rank j and item $/$ after k (observed or not)
- $\left(R_{1}, \ldots R_{t}\right)$ sufficient statistics for multiple $\theta G M^{s}$
- $R=\sum_{j=1}^{t} R_{j}$ sufficient statistics for single θ Mallows ${ }^{s}$

$$
N=2, n=12 \quad N=100, n=12, t=5
$$

Infinite Mallows Model: ML estimation

Theorem[M,Bao 08]

- Sufficient statistics \begin{tabular}{|ll|}
\hlinen \& \# distinct items observed in data

T \& \# total items observed in data

$Q=\left[Q_{k}\right]_{k, l=1: n}$ \& frequency of k l in data

q frequency of k in data

$q=\left[q_{k}\right]_{k=1: n}$ \& | $R=q \mathbf{1}^{T}-Q$ | sufficient statistics matrix |
| :--- | :--- |

\hline
\end{tabular}

- \log-likelihood $\left(\pi_{0}, \theta\right)=\theta L_{\pi_{0}}(R)=\theta$ Sum (Lower triangle (R permuted by $\left.\pi_{0}\right)$)
- The optimal $\pi_{0}{ }^{M L}$ can be found exactly by a B\&B algorithm searching on matrix R.
- The optimal $\theta^{M L}$ is given by

$$
\theta=\log \left(1+T / L_{\pi_{0}}(R)\right)
$$

Infinite GMM: ML estimation

Theorem [M,Bao 08]

- Sufficient statistics

n	\# distinct items observed in data
N_{j}	\# total permutations with length $\geq j$
$Q^{(j)}=\left[Q_{k)}^{(j)}\right]_{k, l=1: n, j=1: t}$	frequency of $1_{[\pi(k)=j, \pi(1)<j]}$ in data
$q^{(j)}=\left[q_{k}^{(j)}\right]_{k=1: n}$	frequency of k in rank j in data
$R^{(j)}=q^{(j)} \mathbf{1}^{T}-Q^{(j)}$	sufficient statistics matrices

- For $\theta_{1: t}$ given, the optimal $\pi_{0}^{M L}$ can be found exactly by a $\mathrm{B} \& \mathrm{~B}$ algorithm searching on matrix $R(\vec{\theta})=\sum_{j} \theta_{j} R^{(j)}$.
- the cost is $L_{\pi_{0}}(R)=\operatorname{Sum}\left(\right.$ Lower $\operatorname{triangle}\left(R(\vec{\theta})\right.$ permuted by $\left.\left.\pi_{0}\right)\right)$
- The optimal $\theta_{j}{ }^{M L}$ is given by $\theta_{j}=\log \left(1+N_{j} / L_{\pi_{0}}\left(R^{(j)}\right)\right)$

Hence, alternate maximization will converge to local optimum

ML Estimation: Remarks

- sufficient statistics Q, q, R finite for finite sample size N but don't compress the data
- data determine only a finite set of parameters
- π_{0} restricted to the observed items
- θ restricted to the observed ranks

- Similar result holds for finite domains

Outline

(1) Statistical models for permutations and the dependence of ranks

- Codes, inversion d'istance and the precedence matrix
(3) Mallows models over permutations
a Maximum Likelihood estimation
- The Likelihood
- A Branch and Bound Algorithm
- Related work, experimental comparisons
- Mallows and GM and other statistical models
(5) Top-t rankings and infinite permutations

6 Statistical results

- Bayesian Estimation, conjugate prior, Dirichlet process mixtures
(9) Conclusions

GM are exponential family models I

$G M^{V}$ for complete rankings
$G M^{S}$ for top－t rankings，n finite or ∞
－have finite sufficient statistics
－are exponential family models in $\pi_{0}, \vec{\theta}$＇
－have conjugate priors
Hyperparameters
－$N_{0}>0$ equivalent sample size
－$Q^{0}\left(\right.$ or $\left.R_{j}^{0}\right) \in \mathbb{R}^{n \times n}$ equivalent sufficient statistics

The conjugate prior I

Hyperparameters: $N_{0}>0, Q^{0}\left(\right.$ or $\left.R_{j}^{0}\right) \in \mathbb{R}^{n \times n}$
The conjugate prior (for $G M^{s}$, top-t, n finite or ∞)

- informative prior for both $\pi_{0}, \vec{\theta}$

$$
\begin{aligned}
P_{0}\left(\pi_{0}, \vec{\theta}\right) & \propto e^{-N_{0} \sum_{j=1}^{t}\left(\theta_{j} L_{\pi_{0}}\left(R_{j}^{0}\right)+\ln Z_{j}\left(\theta_{j}\right)\right)} \\
& \propto e^{-N_{0} \sum_{j=1}^{t}\left(\operatorname{sum} \text { of lower triangle }\left(\Pi_{0} R_{j}^{0} \Pi_{0}^{\top} \theta\right)+\ln Z_{j}\left(\theta_{j}\right)\right)} \\
& \propto e^{-N_{0} D\left(P_{\pi_{0} 0}, \theta_{0} \| P_{\pi_{0}, \vec{\theta}}\right)}
\end{aligned}
$$

with $\pi_{0}{ }^{0}, \vec{\theta}^{0} \mathrm{ML}$ estimates of sufficient statistics $R_{1: t}^{0}, \Pi_{0}$ the permutation matrix of $\pi_{0}, \Theta=$ diagonal matrix of $\vec{\theta}$

- non-informative for π_{0}

$$
P_{0}\left(\pi_{0}, \vec{\theta}| |_{1: t}, N_{0}\right) \propto e^{-N_{0} \sum_{j=1}^{t}\left(\theta_{j} r_{j}+\ln Z_{j}\left(\theta_{j}\right)\right)}
$$

Bayesian Inference: What operations are tractable?

$$
\text { Posterior } P_{0}\left(\pi_{0}, \vec{\theta}\right) \propto e^{\sum_{j}\left(\theta_{j}\left(N_{0} r_{j}+N L_{\pi_{0}}\left(R_{j}\right)\right)+\left(N_{0}+N\right) \ln Z\left(\theta_{j}\right)\right)}
$$

- computing unnormalized prior, posterior
- computing normalization constant of prior, posterior ?
- MAP estimation: produces $\pi_{0}{ }^{\text {Bayes }}, \vec{\theta}^{\text {Bayes }} \checkmark$ (by B\&B)
- model averaging

$$
P\left(\pi \mid N_{0}, r, \pi_{1: N}\right)=\sum_{\pi_{0}} \int_{0}^{\infty} G M^{s}\left(\pi \mid \pi_{0}, \theta\right) P\left(\pi_{0}, \theta \mid N_{0}, r, \pi_{1: N}\right) d \theta ?
$$

- sample from $P\left(\pi_{0}, \theta \mid N_{0}, r, \pi_{1: N}\right)$ Sometimes
- Bayesian Non-Parameteric Clustering (aka Dirichlet Process Mixture Models DPMM)
- Is is efficient?

Clustering with Dirichlet mixtures via MCMC

General DPMM estimation algorithm [Neal03]
MCMC estimation for Dirichlet mixture
Input $\alpha, g_{0}, \beta,\{f\}, \mathcal{D}$
State cluster assignments $c(i), i=1: n$,
parameters θ_{k} for all distinct k
erate (1) for $i=1: n$ (reassign data to clusters)
(1) if $n_{c(i)}=1$ delete this cluster and its $\theta_{c(i)}$
(2) resample $c(i)$ by

$$
c(i)= \begin{cases}\text { existing } k & \text { w.p } \propto \frac{n_{k}-1}{n-1+\alpha} f\left(x_{i}, \theta_{k}\right) \tag{1}\\ \text { new cluster } & \text { w.p } \frac{\alpha}{n-1+\alpha} \int f\left(x_{i}, \theta\right) g_{0}(\theta) d \theta\end{cases}
$$

(3) if $c(i)$ is new label, sample a new $\theta_{c(i)}$ from g_{0}
(2) (resample cluster parameters)
for $k \in\{c(1: n)\}$
(1) sample θ_{k} from posterior $g_{k}(\theta) \propto g_{0}(\theta, \beta) \prod_{i \in C_{k}} f\left(x_{i}, \theta\right)$
g_{k} can be computed in closed form if g_{0} is conjugate prior
utput a state with high posterior

Gibbs Sampling Algorithm for DPM of $G M^{5}$ [M,Chen 10]

Input Parameters N_{0}, r, t, data $\pi_{1: n}$; initialization
Denote $c(i)=$ cluster label of $\pi_{i}, \pi_{0 c}, \theta_{c}, N_{c}$ the parameters and sample size for cluster $c, N=\sum N_{c}$

- Repeat
(1) Reassign points to clustersFor all points π_{i} resample c_{i} resample $c(i)$ by

$$
c(i)= \begin{cases}\text { existing } c & \text { w.p } \propto \frac{n_{k}-1}{n-1} P\left(\pi_{i} \mid \pi_{0 c}, \ldots\right) \\ \text { new cluster } & \text { w.p } \frac{N_{0}}{n-1+N_{0}} Z_{1} / n!\end{cases}
$$

(2) Resample cluster parameters

For all clusters c
Sample $\pi_{0 c} \sim P\left(\pi_{0} ; N_{0}, I, \pi_{i \in c}\right)$ directly for $N_{c}=1$, Gibbs $\vec{\theta}\left|\pi_{0}, \pi_{0}\right| \vec{\theta}$ for $N_{c}>1$

- We use Lemmas 1-5 (coming next)
- to approximate the integrals
- to sample
- Main Idea: replace $G M^{s}$ with simpler Infinite GM

Integrating the posterior: some results I

Model $G M^{s}, n=\infty$
Prior uninformative $P_{0}\left(\pi_{0}, \vec{\theta}\right) \propto e^{-N_{0} \sum_{j}\left(\theta_{j} r_{j}+\ln Z\left(\theta_{j}\right)\right)}$ (improper for $\pi_{0}!$)

$$
Z(\theta)=\frac{1}{1-e^{-\theta}}
$$

Data $\pi_{1}, \ldots \pi_{N}$ top-t rankings, sufficient statistics $R_{1: t}$, total observed items $t \leq n_{\text {obs }} \leq N t$
Posterior $P_{0}\left(\pi_{0}, \vec{\theta}\right) \propto e^{\sum_{j}\left(\theta_{j}\left(N_{0} r_{j}+N L_{\pi_{0}}\left(R_{j}\right)\right)+\left(N_{0}+N\right) \ln Z\left(\theta_{j}\right)\right)}$
Denote $S_{j}=L_{\pi_{0}}\left(R_{j}\right)$

- Lemma 1 [MBao08] Posterior of π_{0} and $\theta_{j} \mid \pi_{0}$

$$
\begin{aligned}
P\left(\theta_{j} \mid \pi_{0}, N_{0}, r, \pi_{1: N}\right) & =\operatorname{Beta}\left(e^{-\theta_{j}} ; N_{0} r_{j}+S_{j}, N_{0}+N+1\right) \\
P\left(\pi_{0} \mid N_{0}, r, \pi_{1: N}\right) & \propto \prod_{j=1}^{t} \operatorname{Beta}\left(N_{0} r_{j}+S_{j}, N_{0}+N+1\right)
\end{aligned}
$$

Integrating the posterior: some results II

- Lemma 2[MChen10] Normalized posterior for $N=1$

$$
Z_{1}=\frac{(n-t)!}{n!}
$$

- Lemma 3 Bayesian averaging over $\vec{\theta}$

$$
P\left(\pi \mid \pi_{0}, N_{0}, r, \pi_{1: N}\right)=\prod_{j=0}^{t} \frac{\operatorname{Beta}\left(S_{j}\left(\pi \mid \pi_{0}\right)+N_{0} r_{j}+S_{j}, N_{0}+N+2\right)}{\operatorname{Beta}\left(N_{0} r_{j}+S_{j}, N_{0}+N+1\right)}
$$

- Lemma 4 Exact sampling of $\pi_{0} \mid \vec{\theta}$ from the posterior possible by stagewise sampling.

$$
P\left(\pi_{0} \mid \vec{\theta}, N_{0}, r, \pi_{1: N}\right) \propto e^{-\sum_{j} \theta_{j} \overbrace{\pi_{0}\left(R_{j}\right)}^{\bar{\nu}_{j}\left(\pi_{0}\right)}}
$$

Integrating the posterior: some results III

- Posterior of π_{0} informative only for items observed in $\pi_{1: N}$, uniform over all other items.
Wanted: to sum out the permutation of the unobserved items.
Example: $\pi=[c a b d]$, data $\pi_{1: N}$ contain obs $=\{a, c, d, e, \ldots\}$ but not b
- Lemma 5

$$
\begin{aligned}
P\left(\pi\left|\pi_{0}\right|_{\text {obs }}\right)= & \prod_{j: \pi(j) \notin \text { obs }} \operatorname{Beta}\left(S_{j}\left(\pi \mid \pi_{0}\right)+N_{0} r_{j}+S_{j}, N_{0}+N+2\right) \\
& \prod_{j: \pi(j) \notin \mathrm{obs}} \operatorname{Beta}\left(t_{j}+N_{0} r_{j}+S_{j}, N_{0}+N\right) \\
& / \prod_{j=0}^{t} \operatorname{Beta}\left(N_{0} r_{j}+S_{j}, N_{0}+N+1\right)
\end{aligned}
$$

Useful? Good approximations for n finite

DPMM estimation artificial data

$$
K=15 \text { clusters, } n=10, t=6 N=30 \times K, \theta_{j}=1
$$

clustering over time $\mathrm{K}=10 \mathrm{t}=615$ clusters random initialization

mean(theta)

Ireland 2000 Presidential Election

- $n=5$ candidates, votes=ranked lists of 5 or less
- individuals grouped by preferences
multimodal distribution
- clustering problem
- parametric, model based: EM algorithm [Busse07]
- nonparametric: EBMS Exponential Blurring Mean Shift [MBao08]
- nonparametric,model based: DPMM Dirichlet Process Mixtures [MChen10]

Ireland Presidential Election

$$
n=5, t=1: 5 N=1083
$$

found 12 clusters, sizes $236, \ldots, 1$

- Mary McAleese (Fianna Fail and Progressive Democrats)
- Rosemary Scallon (Independent)
- Derek Nally (Independent)
- Mary Banotti (Fine Gael)
- Adi Roche (Labour)
- Work in progress: this clustering different from [Murphy\&Gormley]

College program admissions, Ireland

$n=533$ programs, $N=53737$ candidates, $t=10$ options

```
DC116 DC114 DC111 DC148 DB512 DN021 LM054 WD048 LMO20 LM050
WD028
DN008 TR071 DN012 DN052
FT491 FT353 FT471 FT541 FT402 FT404 TR004 FT351 FT110 FT352
```


High flyers' hopes dashed as points hit record highs

Masterclass students set new record for grades
Minister insists school subjects are not heing 'dumberd down'

- Data $=$ all candidates' rankings for college programs in 2000 from [GormleyMurphy03] (they used EM for Mixture of Plackett-Luce models)
- we [MChen10, Ali Murphy M Chen 10] used DPMM (parameters adjusted to

College program rankings: are there clusters?

- 33 clusters cover 99% of the data
- $\vec{\theta}_{c}$ parameters large cluster are concentrated
- number of significant ranks in σ_{c}, θ_{c} vary by cluster

College program rankings: are the clusters meaningful?

Cluster	Size	Description	Male (\%)	Points avg(std)
1	4536	CS \& Engineering	77.2	$369(41)$
2	4340	Applied Business	48.5	$366(40)$
3	4077	Arts \& Social Science	13.1	$384(42)$
4	3898	Engineering (Ex-Dublin)	85.2	$374(39)$
5	3814	Business (Ex-Dublin)	41.8	$394(32)$
6	3106	Cork Based	48.9	$397(33)$
\ldots	\ldots	\ldots	\ldots	\ldots
33	9	Teaching (Home Economics)	0.0	$417(4)$

- Cluster differentiate by subject area
- ... also by geography
- ... show gender difference in preferences

College program rankings: the "prestige" question

- Question: are choices motivated by "prestige" (i.e high point requirements (PR))?
- If yes, then PR should be decreasing along the rankings

PR overall (quantiles)

PR for each cluster and rank

- Unclustered data: PR decreases monotonically with rankings
- Clustered data: PR not always monotonic
- Simpson's paradox!

Summary: Contributions to the GM model

- For consensus ranking problem: New BB formulation
- theoretical analysis tool:
- intuition on problem hardness
- admissible heuristics provide bounds on run time
- competitive algorithm in practice
- For top-t rankings (single θ)
- given correct sufficient statistics - all old algorithms can be used on it
- BB algorithm (theoretical and practical tool)
- For infinite number of items (single or multiple θ)
- introduced the Infinite GM model
- given sufficient statistics, estimation algorithm
- introduced conjugate prior, studied its properties
- Bayesian estimation/DPMM clustering (for finite top-t rankings)
- efficient (approximate) Gibbs sampler for DPMM
- (not mentioned here)
- confidence intervals, convergence rates
- model selection (BIC for GMM)
- EBMS non-parametric clustering
- marginal calculation is polynomial

Conclusions

Why GM model?

- Recongnized as good/useful in applications
- Complementarity:
- Utility based ranking models (Thurstone)
- Stagewise ranking models (GM) - combinatorial
- Nice computational properties/Analyzable statistically
- The code grants GM it's tractability
- representation with independent parameters

The bigger picture

- Statistical analysis of ranking data combines
- combinatorics, algebra
- algorithms
- statistical theory

Thank you

Extensive comparisons I

New experiment Websearch, all relevant algorithms

- Local Search, B\&B,other

Extensive comparisons II

Websearch data, all relevant algorithms (detail)

- Local Search, B\&B,other

Extensive comparisons III

Websearch data, all relevant algorithms (more detail)

- Local Search, B\&B,other

Extensive comparisons IV

Ranks of B\&B algorithms among all other algorithms (cost)

Sufficient statistics spaces I

- space of sufficient statistics $\mathcal{Q}=\left\{Q=\sum_{1=1}^{n} Q\left(\pi_{i}\right)\right\}=\operatorname{convex}\left(\mathbb{S}_{n}\right)$
$\mathcal{Q}=$ convex $_{1+n(n-1) / 2}\left(\mathbb{S}_{n}\right)$ by Caratheodory's Thm
- space of means (marginal polytope) of GM model $\mathcal{M}=\left\{E_{\pi_{0}, \theta}[Q]\right\}$

characterized algorithmically [M\&al07]; [Mallows 57] for Mallows

- GM model is curved exponential family
- Full exponential family $=$ Bradley-Terry model
- not tractable/ loses nice computational/ interpretational properties
- GM \subset full model [Fligner, Verducci 88] \subset Bradley-Terry
- open problem: tractable (exact) ML estimation of full model, Bradley-Terry model $\propto \exp \left(-\sum_{i<j} \alpha_{i j} Q_{i j}(\pi)\right)$
- heuristic [Fligner, Verducci 88] works reasonably well for full model

Consistency and unbiasedness of ML estimates I

- $Q_{i j} / N \rightarrow P\left[\right.$ item $i \prec_{\pi_{0}}$ itemj] as $N \rightarrow \infty[$ FV86]
- Therefore
- for any π_{0} fixed, $\vec{\theta}^{M L}$ is consistent [FV86]
- the discrete parameter $\pi_{0}{ }^{M L}$ consistent when θ_{j} non-increasing [FV86, M in preparation] (joint work with Hoyt Koepke)
- is it "unbiased"?
- Theorem 1 [M , in preparation] For any N finite

$$
E\left[\theta^{M L}\right]>\theta \quad \text { Bias! }
$$

and the order of magnitude of $\theta^{M L}-\theta$ is $\frac{1}{\sqrt{N}}$ w.h.p.

The Bias of $\theta^{M L}$

- artificial data from Infinite GM
- θ_{j} estimates for $j=1: 8$ and sample sizes $N=200,2000$

Convergence rates [M , in preparation] I

Theorem 2 For the Mallows (single θ) model, and sample size N sufficiently large

$$
(\sqrt{2 c h(\theta)})^{-N} \leq P\left[\pi_{0}^{M L} \neq \pi_{0}\right] \leq \frac{n(n-1)}{2}(\sqrt{2 c h(\theta)})^{-N}
$$

Theorem 3 For the GM model, with $\vec{\theta}>0$ strongly unimodal, $\vec{\theta}, \pi_{0}$ unknown

$$
P\left[\pi_{0}^{M L} \neq \pi_{0}\right]=\mathcal{O}\left(e^{-c(\vec{\theta}) N}\right)
$$

- confidence interval for θ in the Mallows model from Theorem 2
- confidence interval for $\vec{\theta}$? in progress

