(Bayesian) Statistics with Rankings

Marina Meilă University of Washington www.stat.washington.edu/mmp

with Alnur Ali, Harr Chen, Bhushan Mandhani, Le Bao, Kapil Phadnis, Artur Patterson, Brendan Murphy, Jeff Bilmes

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

## Burger preferences n = 6, N = 600

med-rare med rare ...

done med-done med ...

med-rare rare med ...

### Elections Ireland, n = 5, N = 1100

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

Roch Scal McAl Bano Nall Scal McAl Nall Bano Roch Roch McAl

#### College programs n = 533, N = 53737, t = 10

DC116 DC114 DC111 DC148 DB512 DN021 LM054 WD048 LM020 LM050 WD028 DN008 TR071 DN012 DN052 FT491 FT353 FT471 FT541 FT402 FT404 TR004 FT351 FT110 FT352

#### Ranking data

- discrete
- many valued
- combinatorial structure

Given a set of rankings  $\{\pi_1, \pi_2, \dots, \pi_N\} \subset \mathbb{S}_n$  find the consensus ranking (or central ranking)  $\pi_0$  that best agrees with the data

#### Elections Ireland, n = 5, N = 1100

< ロ > (四 > (四 > ( 三 > ( 三 > ) ) ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = )

Roch Scal McAl Bano Nall Scal McAl Nall Bano Roch Roch McAl

Consensus = [ Roch Scal McAl Bano Nall ] ?

**Problem** (also called Preference Aggregation, Kemeny Ranking) Given a set of rankings  $\{\pi_1, \pi_2, \ldots, \pi_N\} \subset \mathbb{S}_n$  find the consensus ranking (or central ranking)  $\pi_0$  such that

$$\pi_0 = \operatorname{argmin}_{\mathbb{S}_n} \sum_{i=1}^N d(\pi_i, \pi_0)$$

for d = inversion distance / Kendall  $\tau$ -distance / "bubble sort" distance

**Problem** (also called Preference Aggregation, Kemeny Ranking) Given a set of rankings  $\{\pi_1, \pi_2, \ldots, \pi_N\} \subset \mathbb{S}_n$  find the consensus ranking (or central ranking)  $\pi_0$  such that

$$\pi_0 = \operatorname{argmin}_{\mathbb{S}_n} \sum_{i=1}^N d(\pi_i, \pi_0)$$

for d = inversion distance / Kendall  $\tau$ -distance / "bubble sort" distance **Relevance** 

- voting in elections (APA, Ireland, Cambridge), panels of experts (admissions, hiring, grant funding)
- aggregating user preferences (economics, marketing)
- subproblem of other problems (building a good search engine: leaning to rank [Cohen, Schapire,Singer 99])

Equivalent to finding the "mean" or "median" of a set of points

**Problem** (also called Preference Aggregation, Kemeny Ranking) Given a set of rankings  $\{\pi_1, \pi_2, \ldots \pi_N\} \subset \mathbb{S}_n$  find the consensus ranking (or central ranking)  $\pi_0$  such that

$$\pi_0 = \operatorname{argmin}_{\mathbb{S}_n} \sum_{i=1}^N d(\pi_i, \pi_0)$$

for d = inversion distance / Kendall  $\tau$ -distance / "bubble sort" distance **Relevance** 

- voting in elections (APA, Ireland, Cambridge), panels of experts (admissions, hiring, grant funding)
- aggregating user preferences (economics, marketing)
- subproblem of other problems (building a good search engine: leaning to rank [Cohen, Schapire,Singer 99])

Equivalent to finding the "mean" or "median" of a set of points

Fact: Consensus ranking for the inversion distance is NP hard

#### **Consensus ranking problem**

$$\pi_0 = \operatorname{argmin}_{\mathbb{S}_n} \sum_{i=1}^N d(\pi_i, \pi_0)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

This talk

- Will generalize the problem
  - from finding  $\pi_0$ to estimating statistical model
- Will generalize the data
  - From complete, finite permutations to top-t rankings, countably many items  $(n \to \infty)...$

## Outline

#### Statistical models for permutations and the dependence of ranks

- 2 Codes, inversion distance and the precedence matrix
- 3 Mallows models over permutations
- 4 Maximum Likelihood estimation
  - The Likelihood
  - A Branch and Bound Algorithm
  - Related work, experimental comparisons
  - Mallows and GM and other statistical models
- 5 Top-t rankings and infinite permutations
- 6 Statistical results
  - Bayesian Estimation, conjugate prior, Dirichlet process mixtures
- Conclusions

## Some notation

Base set { a, b, c, d } contains n items (or alternatives) E.g { rare, med-rare, med, med-done, ...}  $\mathbb{S}_n$  = the symmetric group = the set of all permutations over n items  $\pi = [c \ a \ b \ d] \in \mathbb{S}_n$  a permutation/ranking  $\pi = [c \ a]$  a top-t ranking (is a partial order)  $t = |\pi| \le n$  the length of  $\pi$ 

#### We observe

data  $\pi_1, \pi_2, \ldots, \pi_N \sim \text{sampled independently from distribution } P \text{ over } \mathbb{S}_n$  (where P is unknown)

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

## Representations for permutations

reference permutation id = [abcd]

$$\pi = \begin{bmatrix} c \ a \ b \ d \end{bmatrix} \quad \text{ranked list} \\ (2 \ 3 \ 1) \quad \text{cycle representation} \\ \begin{bmatrix} 2 & 3 & 1 & 4 \\ 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 \\ \hline 0 & - & 0 & 1 \\ \hline 1 & 1 & - & 1 \\ \hline 0 & 0 & 0 & - \\ (V_1, V_2, V_3) = (1, 1, 0) \\ (s_1, s_2, s_3) = (2, 0, 0) \end{bmatrix} \text{ precedence matrix, } Q$$

ence matrix,  $Q_{ii} = 1$  if  $i \prec_{\pi} j$ ,

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

reference permutation id = [abcd]



◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ● のへで

## Thurstone: Ranking by utility

#### The Thurstone Model

- item j has expected utility  $\mu_j$
- sample  $u_j = \mu_j + \epsilon_j$ , j = 1 : n (independently or not)  $u_j$  is the *actual utility* of item j

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー のへで

• sort  $(u_j)_{j=1:n}$  to obtain a  $\pi$ 

## Thurstone: Ranking by utility

#### The Thurstone Model

- item j has expected utility  $\mu_j$
- sample  $u_j = \mu_j + \epsilon_j$ , j = 1 : n (independently or not)  $u_j$  is the *actual utility* of item j
- sort  $(u_j)_{j=1:n}$  to obtain a  $\pi$
- rich model class
- typically  $\epsilon_j \sim Normal(0, \sigma_j^2)$
- parameters interpretable
- some simple probability calculations are intractable
  - *P*[*a* ≺ *b*]] tractable, *P*[*i* in first place] tractable

< ロ > (四 > (四 > ( 三 > ( 三 > ) ) ) 문 ( - )

- *P*[*i* in 85th place] intractable
- each rank of  $\pi$  depends on all the  $\epsilon_j$

## Plackett-Luce: Ranking as drawing without replacement

#### The Plackett-Luce model

• item *j* has weight  $w_j > 0$ 

$$P([a, b, \ldots]) \propto \frac{w_a}{\sum_{i'} w_{i'}} \frac{w_b}{\sum_{i'} w_{i'} - w_a} \cdots$$

< ロ > (四 > (四 > ( 三 > ( 三 > ) ) ) 문 ( - )

- items are drawn "without replacement" from distribution ( $w_1, w_2 \dots w_n$ ) (Markov chain)
- normalization constant Z generally not known
- distribution of first ranks approximately independent
- item at rank *j* depends on all previous ranks

## Bradley-Terry: penalizing inversions

The Bradley-Terry model

$$P(\pi) \propto \exp\left(-\sum_{i < j} lpha_{ij} Q_{ij}(\pi)
ight)$$

《曰》 《聞》 《臣》 《臣》 三臣 …

- exponential family model
- one parameter for every pair (i,j)
- *α<sub>ij</sub>* is penalty for inverting *i* with *j* only qualitative interpretation
- normalization constant Z generally not known
- transitivity i ≺ j, j ≺ k ⇒ i ≺ k
   therefore the sufficient statistics Q<sub>ij</sub> are dependent

## Bradley-Terry: penalizing inversions

The Bradley-Terry model

$$P(\pi) \propto \exp\left(-\sum_{i < j} lpha_{ij} Q_{ij}(\pi)
ight)$$

《曰》 《聞》 《臣》 《臣》 三臣 …

- exponential family model
- one parameter for every pair (i,j)
- *α<sub>ij</sub>* is penalty for inverting *i* with *j* only qualitative interpretation
- normalization constant Z generally not known
- transitivity i ≺ j, j ≺ k ⇒ i ≺ k
   therefore the sufficient statistics Q<sub>ij</sub> are dependent
- Mallows models
  - are a subclass of Bradley-Terry models
  - do not suffer from this dependence
  - coming next...

## Outline

#### Statistical models for permutations and the dependence of ranks

#### 2 Codes, inversion distance and the precedence matrix

3 Mallows models over permutations

#### 4 Maximum Likelihood estimation

- The Likelihood
- A Branch and Bound Algorithm
- Related work, experimental comparisons
- Mallows and GM and other statistical models

#### 5 Top-t rankings and infinite permutations

#### 6 Statistical results

• Bayesian Estimation, conjugate prior, Dirichlet process mixtures

・ロト ・御ト ・ヨト ・ヨト

- E

#### Conclusions

## The precedence matrix Q

$$\pi = [c a b d]$$

$$Q(\pi) = \begin{bmatrix} a & b & c & d \\ - & 1 & 0 & 1 & a \\ 0 & - & 0 & 1 & b \\ 1 & 1 & - & 1 & c \\ 0 & 0 & 0 & - & d \end{bmatrix}$$

 $Q_{ij}(\pi) = 1$  iff *i* before *j* in  $\pi$ 

$$Q_{ij} \;=\; 1 - Q_{ji}$$

reference permutation id = [abcd]: determines the order of rows, columns in Q

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

## The number of inversions and Q

$$\pi = [\mathit{cabd}]$$

$$Q(\pi) = \begin{vmatrix} a & b & c & d \\ - & 1 & 0 & 1 & a \\ 0 & - & 0 & 1 & b \\ 1 & 1 & - & 1 & c \\ 0 & 0 & 0 & - & d \end{vmatrix}$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

define

•  $L(Q) = \sum_{i>j} Q_{ij} = \text{sum}(\text{ lower triangle }(Q))$ 

## The number of inversions and Q

$$\pi = [cabd]$$

$$Q(\pi) = \begin{vmatrix} a & b & c & d \\ - & 1 & 0 & 1 & a \\ 0 & - & 0 & 1 & b \\ 1 & 1 & - & 1 & c \\ 0 & 0 & 0 & - & d \end{vmatrix}$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

define

•  $L(Q) = \sum_{i>i} Q_{ij} = \text{sum}(\text{ lower triangle }(Q))$ 

then

• #inversions $(\pi) = L(Q) = d(\pi, id)$ 

## The inversion distance and Q

Referce permutation id = [a b c d]

 $\begin{aligned} \pi \ = \ [ \ c \ a \ b \ d \ ], \\ \text{Reference permutation} \\ \pi_0 \ = \ [ \ b \ a \ d \ c \ ] \end{aligned}$ 





## The inversion distance and Q

To obtain  $d(\pi, \pi_0)$ 

- Construct  $Q(\pi)$
- 2 Sort rows and columns by  $\pi_0$
- Sum elements in lower triangle

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ =

## The inversion distance and Q

To obtain  $d(\pi, \pi_0)$ 

- **(1)** Construct  $Q(\pi)$
- 2 Sort rows and columns by  $\pi_0$
- Sum elements in lower triangle

Note also that

To obtain

 $d(\pi_1, \pi_0) + d(\pi_2, \pi_0) + \dots$ 

- Construct  $Q(\pi_1), Q(\pi_2), \ldots$
- Sum  $Q = Q(\pi_1) + Q(\pi_2) + \dots$
- Sort rows and columns of Q by  $\pi_0$
- Sum elements in lower triangle of Q

$$\pi = [c \, a \, b \, d], \ \pi_0 = [b \, a \, d \, c]$$

|  | b | а | d | С |   |
|--|---|---|---|---|---|
|  | — | 0 | 1 | 0 | b |
|  | 1 | - | 1 | 0 | а |
|  | 0 | 0 | - | 0 | d |
|  | 1 | 1 | 1 | — | с |
|  |   |   |   |   |   |

$$d(\pi,\pi_0) = 4$$

(日) (四) (문) (문) (문)

## A decomposition for the inversion distance

 $d(\pi, \pi_0) = \# \text{ inversions between } \pi \text{ and } \pi_0$   $d([c a b d], [b a d c]) = \# \underbrace{(\text{inversions w.r.t } b)}_{V_1} + \# \underbrace{(\text{inversions w.r.t } a)}_{V_2} + \# \underbrace{(\text{inversions w.r.t } d)}_{V_3} + \dots$ 

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー のへで

 $V_j = \#$  inversions where  $\pi_0(j)$  is disfavored

Example  $\pi = [c a b d], \quad \pi_0 = [b a d c]$ 

|       | а     | b     | с     | d     |   |
|-------|-------|-------|-------|-------|---|
| $S_2$ | _     | 1     | 0     | 1     | а |
| $S_3$ | 0     | -     | 0     | 1     | Ь |
| $S_1$ | 1     | 1     | -     | 1     | с |
| $S_4$ | 0     | 0     | 0     | -     | d |
|       | $V_1$ | $V_2$ | $V_3$ | $V_4$ |   |

code

 $(V_1, V_2, V_3) = (1, 1, 0)$ 

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Example  $\pi = [c a b d], \quad \pi_0 = [b a d c]$ 

|       | а     | b     | с     | d     |   |
|-------|-------|-------|-------|-------|---|
| $S_2$ | _     | 1     | 0     | 1     | а |
| $S_3$ | 0     | -     | 0     | 1     | Ь |
| $S_1$ | 1     | 1     | -     | 1     | с |
| $S_4$ | 0     | 0     | 0     | -     | d |
|       | $V_1$ | $V_2$ | $V_3$ | $V_4$ |   |

code

 $(V_1, V_2, V_3) = (1, 1, 0)$ 

or

$$(S_1, S_2, S_3) = (2, 0, 0)$$

$$d(\pi, \mathrm{id}) = 2$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Example 
$$\pi = [c a b d], \quad \pi_0 = [b a d c]$$



code

$$(V_1, V_2, V_3) = (1, 1, 0)$$

or

$$(S_1, S_2, S_3) = (2, 0, 0)$$

$$d(\pi, \mathrm{id}) = 2$$

Codes are defined w.r.t any  $\pi_0$ 

**code**  $V_j(\pi|\pi_0), S_j(\pi|\pi_0)$ 

$$(V_1, V_2, V_3) = (2, 1, 1)$$

<ロト (四) (三) (三) (三)

æ

Example 
$$\pi = [c a b d], \quad \pi_0 = [b a d c]$$

|       | а     | b     | с     | d     |   |
|-------|-------|-------|-------|-------|---|
| $S_2$ | _     | 1     | 0     | 1     | а |
| $S_3$ | 0     | -     | 0     | 1     | Ь |
| $S_1$ | 1     | 1     | -     | 1     | с |
| $S_4$ | 0     | 0     | 0     | -     | d |
|       | $V_1$ | $V_2$ | $V_3$ | $V_4$ |   |

code

 $(V_1, V_2, V_3) = (1, 1, 0)$ 

or

 $(S_1, S_2, S_3) = (2, 0, 0)$ 

$$d(\pi, \mathrm{id}) = 2$$

Codes are defined w.r.t any  $\pi_0$ 

**code**  $V_j(\pi|\pi_0), S_j(\pi|\pi_0)$ 

$$(V_1, V_2, V_3) = (2, 1, 1)$$

or

$$(S_1, S_2, S_3) = (3, 1, 0)$$

 $d(\pi,\pi_0) = 4$ 

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

## Codes and inversion distance summary

#### Inversion distance facts

• 
$$d(\pi, \pi_0) = \sum_j V_j(\pi | \pi_0) = \sum_j S_j(\pi | \pi_0)$$

#### Inversion distance facts

• 
$$d(\pi, \pi_0) = \sum_j V_j(\pi | \pi_0) = \sum_j S_j(\pi | \pi_0)$$

• 
$$d(\pi, \pi_0) = L(\Pi_0^T Q(\pi) \Pi_0) \stackrel{def}{=} L_{\pi_0}(Q(\pi))$$

#### **Codes facts**

•  $(V_{1:n-1})$  or  $(S_{1:n-1})$  defined w.r.t any reference permutation

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

• we denote them  $V_j(\pi|\pi_0)$  or  $S_j(\pi|\pi_0)$ 

#### Inversion distance facts

• 
$$d(\pi, \pi_0) = \sum_j V_j(\pi | \pi_0) = \sum_j S_j(\pi | \pi_0)$$

• 
$$d(\pi,\pi_0) = L(\Pi_0^T Q(\pi)\Pi_0) \stackrel{def}{=} L_{\pi_0}(Q(\pi))$$

#### **Codes facts**

(V<sub>1:n-1</sub>) or (S<sub>1:n-1</sub>) defined w.r.t any reference permutation
 we denote them V<sub>j</sub>(π|π<sub>0</sub>) or S<sub>j</sub>(π|π<sub>0</sub>)

• 
$$(V_{1:n-1})$$
 or  $(S_{1:n-1})$  uniquely represent  $\pi$ 

• with n-1 independent parameters

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

## The Mallows Model

• The Mallows model is a distribution over  $\mathbb{S}_n$  defined by

$$P_{\pi_0,\theta}(\pi) = \frac{1}{Z(\theta)} e^{-\theta d(\pi,\pi_0)}$$

(日) (四) (문) (문) (문)

- $\pi_0$  is the central permutation
  - $\pi_0$  mode of  $P_{\pi_0,\theta}$ , unique if  $\theta > 0$
- $\theta \ge 0$  is a dispersion parameter
  - for  $\theta = 0$ ,  $P_{\pi_0,0}$  is uniform over  $\mathbb{S}_n$

### The Mallows Model

• The Mallows model is a distribution over  $\mathbb{S}_n$  defined by

$$P_{\pi_0,\theta}(\pi) = \frac{1}{Z(\theta)} e^{-\theta d(\pi,\pi_0)}$$

- $\pi_0$  is the central permutation
  - $\pi_0$  mode of  $P_{\pi_0,\theta}$ , unique if  $\theta > 0$
- $\theta \ge 0$  is a dispersion parameter
  - for  $\theta = 0$ ,  $P_{\pi_0,0}$  is uniform over  $\mathbb{S}_n$

• 
$$d(\pi,\pi_0) = \sum_j V_j(\pi|\pi_0)$$
 therefore  $P_{\pi_0,\theta}$  is product of  $P_{\theta}(V_j(\pi|\pi_0))$ 

$$P_{\pi_{0},\theta}(\pi) = \frac{1}{Z(\theta)} \prod_{j=1}^{n-1} e^{-\theta V_{j}(\pi|\pi_{0})} \text{ and } Z(\theta) = \prod_{j=1}^{n-1} \underbrace{\frac{1 - e^{-\theta(n-j+1)}}{1 - e^{-\theta}}}_{Z_{j}(\theta)}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへの

# The Generalized Mallows (GM) Model [Fligner, Verducci 86]

Mallows model 
$$P_{\pi_0,\theta}(\pi) = \frac{1}{Z_{\theta}} \exp\left(-\theta \sum_{j=1}^{n-1} V_j(\pi|\pi_0)\right)$$
  
Idea:  $\theta \to \vec{\theta} = (\theta_1, \theta_2, \dots, \theta_{n-1})$   
Generalized Mallows(GM) model

$$P_{\pi_0,\vec{\theta}}(\pi) = \frac{1}{Z(\vec{\theta})} \prod_{j=1}^{n-1} e^{-\theta_j V_j(\pi|\pi_0)} \quad \text{with} \quad Z(\vec{\theta}) = \prod_{j=1}^{n-1} Z_j(\theta_j)$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

## The Generalized Mallows (GM) Model [Fligner, Verducci 86]

Mallows model  $P_{\pi_0,\theta}(\pi) = \frac{1}{Z_{\theta}} \exp\left(-\theta \sum_{j=1}^{n-1} V_j(\pi|\pi_0)\right)$ Idea:  $\theta \to \vec{\theta} = (\theta_1, \theta_2, \dots, \theta_{n-1})$ Generalized Mallows(GM) model

$$P_{\pi_{0},\vec{\theta}}(\pi) = \frac{1}{Z(\vec{\theta})} \prod_{j=1}^{n-1} e^{-\theta_{j} V_{j}(\pi | \pi_{0})} \quad \text{with} \quad Z(\vec{\theta}) = \prod_{j=1}^{n-1} Z_{j}(\theta_{j})$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー のへで

Similar definitions with  $S_j$  instead of  $V_j$ : models denoted  $GM^V$ ,  $GM^S$ 

# The Generalized Mallows (GM) Model [Fligner, Verducci 86]

Mallows model  $P_{\pi_0,\theta}(\pi) = \frac{1}{Z_{\theta}} \exp\left(-\theta \sum_{j=1}^{n-1} V_j(\pi|\pi_0)\right)$ Idea:  $\theta \to \vec{\theta} = (\theta_1, \theta_2, \dots, \theta_{n-1})$ Generalized Mallows(GM) model

$$P_{\pi_0,\vec{\theta}}(\pi) = \frac{1}{Z(\vec{\theta})} \prod_{j=1}^{n-1} e^{-\theta_j V_j(\pi|\pi_0)} \quad \text{with} \quad Z(\vec{\theta}) = \prod_{j=1}^{n-1} Z_j(\theta_j)$$

Similar definitions with  $S_j$  instead of  $V_j$ : models denoted  $GM^V$ ,  $GM^S$  **Cost** interpretation of the GM models

•  $GM^V$ : Cost =  $\sum_j \theta_j V_j$ 

pay price  $\theta_j$  for every inversion w.r.t item j

•  $GM^S$ : Cost =  $\sum_i \theta_j S_j$ 

pay price  $\theta_j$  for every inversion in picking rank j

• Assume stepwise construction of  $\pi$ :  $\theta_j$  represents importance of step j
# Outline

- Statistical models for permutations and the dependence of ranks
  - 2 Codes, inversion distance and the precedence matrix
- 3 Mallows models over permutations
  - Maximum Likelihood estimation
    - The Likelihood
    - A Branch and Bound Algorithm
    - Related work, experimental comparisons
    - Mallows and GM and other statistical models
  - 5 Top-t rankings and infinite permutations
  - 6 Statistical results
    - Bayesian Estimation, conjugate prior, Dirichlet process mixtures
- Conclusions

## The (Max Likelihood) estimation problem

Burger preferences n = 6, N = 600

med-rare med rare ...
done med-done med ...
med-rare rare med ...

- Data  ${\pi_i}_{i=1:N}$  i.i.d. sample from  $\mathbb{S}_n$
- Model Mallows  $P_{\pi_0,\theta}$  or GM  $P_{\pi_0,\vec{\theta}}$
- **Parameter estimation:**  $\pi_0$  known, estimate  $\theta$  or  $\vec{\theta}$ . This problem is easy (convex, univariate)

• Central permutation estimation:  $\vec{\theta}$  known, estimate  $\pi_0$ Known as Consensus ranking if  $\theta = 1$  ( $\approx$ MinFAS ) This problem is NP hard. (many heuristic/approx. algorithms exist)

• General estimation: estimate both  $\pi_0$  and  $\theta$  or  $\vec{\theta}$ . ...at least as hard as consensus ranking. Will show it's no harder.

### The likelihood

• Likelihood of  $\pi_0, \theta = \mathsf{P}[ \text{ data } | \pi_0, \theta ]$ 

• Max Likelihood estimation  $\pi_0^*, \theta^* = \operatorname{argmax} P[ \text{ data } | \pi_0, \theta ]$ 

Mallows  

$$logl(\theta, \pi_0) = \frac{1}{N} \ln P(\pi_{1:N}; \theta, \pi_0) = -\theta \sum_{j=1}^{n-1} \frac{\sum_{i=1}^{N} V_j(\pi_i \pi_0)}{N} + \sum_{j=1}^{n-1} \ln Z_j(\theta)$$

Generalized Mallows

$$logl(\theta, \pi_0) = \frac{1}{N} \ln P(\pi_{1:N}; \theta, \pi_0) = -\sum_{j=1}^{n-1} [\theta_j \frac{\sum_{i=1}^{N} V_j(\pi_i | \pi_0)}{N} + \ln Z_j(\theta_j)]$$

 $\bar{V}_i$ 

▲ロト ▲団ト ▲ヨト ▲ヨト 三国 - のへで

## The likelihood

Gene

• Likelihood of  $\pi_0, \theta = \mathsf{P}[ \text{ data } | \pi_0, \theta ]$ 

• Max Likelihood estimation  $\pi_0^*, \theta^* = \operatorname{argmax} P[ \text{ data } | \pi_0, \theta ]$ 

Mallows  

$$logl(\theta, \pi_0) = \frac{1}{N} \ln P(\pi_{1:N}; \theta, \pi_0) = -\theta \sum_{j=1}^{n-1} \frac{\sum_{i=1}^{N} V_j(\pi_i \pi_0)}{N} + \sum_{j=1}^{n-1} \ln Z_j(\theta)$$

ralized Mallows  

$$logl(\theta, \pi_0) = \frac{1}{N} \ln P(\pi_{1:N}; \theta, \pi_0) = -\sum_{j=1}^{n-1} \left[\theta_j \underbrace{\frac{\sum_{i=1}^{N} V_j(\pi_i | \pi_0)}{N} + \ln Z_j(\theta_j)}_{N}\right]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

- Likelihood is separable and concave in each  $\theta_j \implies$  estimation of  $\theta_j$  is straightforward
  - by convex minimization of  $\theta_j \bar{V}_j + \ln Z_j(\theta_j)$  (numerical)
- Dependence on  $\pi_0$  complicated

## ML Estimation of $\pi_0$ : costs and main results

|         | $\pi_{1:N}$ complete rankings                                                                      | $\pi_{1:t}$ top-t rankings, $N \leq \infty$                                                      |
|---------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
|         |                                                                                                    |                                                                                                  |
| Mallows | $\sum_{j=1}^{n-1} \frac{\sum_{i} V_j(\pi   \pi_0)}{N}$                                             | $\sum_{j=1}^{t} \frac{\sum_{i} S_{j}(\pi   \pi_{0})}{N}$                                         |
| GM      | $\sum_{j=1}^{n-1} \left[ \theta_j \frac{\sum_i V_j(\pi_i   \pi_0)}{N} + \ln Z_j(\theta_j) \right]$ | $\sum_{j=1}^{t} \left[ \theta_j \frac{\sum_i S_j(\pi_i   \pi_0)}{N} + \ln Z_j(\theta_j) \right]$ |
| Mallows | [M&al07] $\pi_0^{ML}$ can be found ex-                                                             | [MBao08] $\pi_0^{ML}$ can be found ex-                                                           |
|         | actly by B&B search on matrix                                                                      | actly by B&B search on matrix                                                                    |
|         | $Q(\pi_{1:N}).$                                                                                    | $R(\pi_{1:N}).$                                                                                  |
| GM      | [M&al07] $\pi_0^{ML}, \vec{\theta}^{ML}$ can be                                                    | [MBao08] A local maximum for                                                                     |
|         | found exactly by B&B search on                                                                     | $\pi_0, \vec{	heta}$ can be found by alternate                                                   |
|         | matrix $Q(\pi_{1:N})$ .                                                                            | maximization: $\pi_0   \vec{\theta}$ by B&B,                                                     |
|         |                                                                                                    | $\vec{\theta}   \pi_0$ by convex unidimensional.                                                 |

$$Q(\pi_{1:N}) = \sum_{i=1:N} Q(\pi_i)$$
  
B&B = branch-and-bound

• the search may not be tractable

 $R(\pi_{1:N}) = \sum_{i=1:N} R(\pi_i)$  (defined next

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

# Sufficient statistics (complete permutations) [M&al07]



<ロ> (四)、(四)、(日)、(日)、

- Define  $Q \equiv Q(\pi_{1:N}) = \frac{1}{N} \sum_{i=1}^{N} Q(\pi_i)$
- Sufficient statistics are sum of preference matrices for data













Wanted:  $\operatorname{argmin}_{\pi_0} L(\Pi_0^T Q \Pi_0) = \operatorname{argmin}_{\pi_0} L_{\pi_0}(Q) = \operatorname{argmin}$  lower triangle of Q over all row and column permutations



<ロト <四ト <注入 <注下 <注下 <



### The Branch-and-Bound Algorithm



<ロト (四) (三) (三) (三)

- E

#### Branch and Bound algorithm

Node  $\rho$  stores:  $r_j$ , parent,  $j = |\rho|$ ,  $V_j(\rho)$ ,  $\theta_j$ ,  $C(\rho)$ ,  $L(\rho)$ ; S = priority queue with nodes to be expanded.

**Initialize**:  $S = \{\rho_{\emptyset}\}, \rho_{\emptyset} =$ the empty sequence,  $j = 0, C(\rho_{\emptyset}) = V(\rho_{\emptyset}) = L(\rho_{\emptyset}) = 0$ Repeat remove  $\rho \in \operatorname{argmin} L(\rho)$  from *S*  $o \in S$ if  $|\rho| = n$  (*Return*) **Output**  $\rho$ ,  $L(\rho) = C(\rho)$  and **Stop**. else (Expand  $\rho$ ) for  $r_{j+1} \in [n] \setminus \rho$  create node  $\rho' = \rho | r_{j+1}, V_{j+1}(\rho') = V_j(r_{1:j-1}, r_{j+1}) - Q_{r_i r_{j+1}}$ compute  $V^{min} = \min_{r_{j+1} \in [n] \setminus \rho} V_{j+1}(\rho | r_{j+1})$ calculate  $A(\rho)$  admissible heuristic [MandhaniM09] for  $r_{i+1} \in [n] \setminus \rho$ calculate  $\theta_{i+1}$  from  $n-j-1, V_{i+1}(\rho')$  $C(\rho') = C(\rho) + \theta_{i+1}V_{i+1}(\rho'), L(\rho') = C(\rho') + A(\rho),$ store node  $(\rho', j+1, V_{i+1}, \theta_{i+1}, C(\rho'), L(\rho'))$  in S

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー のへで

## ML Estimation of $\pi_0$ : costs and main results

|         | $\pi_{1:N}$ complete rankings                                                                      | $\pi_{1:t}$ top-t rankings, $N \leq \infty$                                                      |
|---------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
|         |                                                                                                    |                                                                                                  |
| Mallows | $\sum_{j=1}^{n-1} \frac{\sum_{i} V_j(\pi   \pi_0)}{N}$                                             | $\sum_{j=1}^{t} \frac{\sum_{i} S_{j}(\pi   \pi_{0})}{N}$                                         |
| GM      | $\sum_{j=1}^{n-1} \left[ \theta_j \frac{\sum_i V_j(\pi_i   \pi_0)}{N} + \ln Z_j(\theta_j) \right]$ | $\sum_{j=1}^{t} \left[ \theta_j \frac{\sum_i S_j(\pi_i   \pi_0)}{N} + \ln Z_j(\theta_j) \right]$ |
| Mallows | [M&al07] $\pi_0^{ML}$ can be found ex-                                                             | [MBao08] $\pi_0^{ML}$ can be found ex-                                                           |
|         | actly by B&B search on matrix                                                                      | actly by B&B search on matrix                                                                    |
|         | $Q(\pi_{1:N}).$                                                                                    | $R(\pi_{1:N}).$                                                                                  |
| GM      | [M&al07] $\pi_0^{ML}, \vec{\theta}^{ML}$ can be                                                    | [MBao08] A local maximum for                                                                     |
|         | found exactly by B&B search on                                                                     | $\pi_0, \vec{	heta}$ can be found by alternate                                                   |
|         | matrix $Q(\pi_{1:N})$ .                                                                            | maximization: $\pi_0   \vec{\theta}$ by B&B,                                                     |
|         |                                                                                                    | $\vec{\theta}   \pi_0$ by convex unidimensional.                                                 |

$$Q(\pi_{1:N}) = \sum_{i=1:N} Q(\pi_i)$$
  
B&B = branch-and-bound

• the search may not be tractable

 $R(\pi_{1:N}) = \sum_{i=1:N} R(\pi_i)$  (defined next

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

# Algorithm summary

- Sufficient statistics =  $Q(\pi_{1:N})$
- Cost(π<sub>0</sub>, θ) = θL<sub>π0</sub>(Q(π<sub>1:N</sub>)) (lower triangle of Q after permuting rows and columns by π<sub>0</sub>

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

- B&B Algorithm constructs  $\pi_0$  one rank at a time
- Exact but not always tractable
- B&B Algorithms exist also for
  - *GM<sup>s</sup>*
  - for multiple parameters  $\vec{ heta}$
- Performance issues
  - Admissible heuristics help
  - Beam search and other approximations possible

### What makes the search hard (or tractable)?

Running time = time( compute Q ) + time( B&B )  $O(n^2N)$  independent of N

- Number nodes explored by B&B
  - independent of sample size N
  - independent of  $\pi_0$
  - depends on dispersion  $\vec{\theta}^{\textit{ML}}$
- $\vec{ heta} = 0 \Rightarrow$  uniform distribution
  - all branches have equal cost
- $\theta_{1:n-1}^{ML}$  large  $\Rightarrow$  likelihood decays fast around  ${\pi_0}^{ML} \Rightarrow$  pruning efficient
- Theoretical results
  - e.g if  $heta_j > T_j, \, j=1:n-1$ , then B&B search defaults to greedy

< ロ > (四 > (四 > ( 三 > ( 三 > ) ) ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = )

- Practically
  - diagnoses possible during B&B run

## Admissible heuristics

To guarantee optimality we need lower bounds for the cost-to-go (admissible heuristics)

- admissible heuristic for Mallows Model [MPPB07]
- improved heuristic for Mallows model [Mandhani,M 09], first admissible heuristic for GMM model
- If data  $\sim P_{\theta,\pi_0}$  with  $\theta$  large, admissible heuristic A known  $\Rightarrow$  number of expanded nodes is bounded above

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

## Related work I

#### **ML Estimation**

[FV86]  $\vec{\theta}$  estimation; heuristic for  $\pi_0$ 

 ${\rm FV}$  algorithm/Borda rule

• Compute  $\bar{q}_j, j = 1 : n$  column sums of Q

- 2 Sort  $(\bar{q}_j)_{j=1}^n$  in increasing order;  $\pi_0$  is sorting permutation
- $\bar{q}_j$  are Borda counts
- $\mathrm{FV}$  is consistent for infinite N



## Related work II

#### Consensus Ranking ( $\theta = 1$ )

[CSS99] CSS ALGORITHM = greedy search on Q

improved by extracting strongly connected components

[Ailon,Newman,Charikar 05] Randomized algorithm guaranteed 11/7 factor approximation (ANC)

[Mohri, Ailon 08] linear program

[Mathieu, Schudy 07]  $(1 + \epsilon)$  approximation, time  $\mathcal{O}(n^6/\epsilon + 2^{2^{\mathcal{O}(1/\epsilon)}})$ 

[Davenport,Kalagnanan 03] Heuristics based on edge-disjoint cycles used by our B&B implementation

[Conitzer,D,K 05] Exact algorithm based on integer programming, better bounds for edge disjoint cycles (DK)

[Betzler, Brandt, 10] Exact problem reductions

• Most of this work based on the MinFAS view

$$Q_{ij} > .5 \iff i \bullet \stackrel{Q_{ij}-.5}{\longrightarrow} \bullet j$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Prune graph to a DAG removing minimum weight

# Related work III

#### Extensions and applications to social choice

• Inferring rakings under partial and aggregated information [ShahJabatula08], [JabatulaFariasShah10]

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー のへで

- Vote elicitation under probabilistic models of choice [LuBoutillier11]
- Voting rules viewed as Maximum Likelihood [ConitzerSandholm08]

• . . .

#### When is the B&B search tractable? I

Excess cost w.r.t B&B; data from Mallows model n = 100, N = 100



▲ロト ▲団ト ▲ヨト ▲ヨト 三国 - のへの

### Running time vs number items *n*

Data generated from  $Mallows(\theta)$ 



▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー のへで

#### Extensive comparisons

- Experimental setup from [Coppersmith&al07]. Experiments by Alnur Ali [AliM11]
- Data: artificial (Mallows and Plackett-Luce), Ski, Web-search total 45 data sets, n = 50 ... 350, N = 4... 100 typically
- Algorithms ILP, LP, B&B (with limited queue), Local Search (LS), FV/Borda, QuickSort (QS), ... and combinations (total 104 algorithms)

Websearch data B&B is competitive ( Local Search, B&B,other )



#### Other statistical models on rankings

Several "natural" parametric distributions on  $\mathbb{S}_n$  exist.

•  $P(\pi) \propto \exp\left(-\sum_{j=1}^{n-1} \theta_j V_j(\pi)\right)$ 

• 
$$P(\pi) \propto \exp\left(-\sum_{i < j} \alpha_{ij} Q_{ij}(\pi)\right)$$

Generalized Mallows

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

Bradley-Terry

 $\mathsf{Mallows} \subset \mathsf{GM} \subset \mathsf{Bradley}\text{-}\mathsf{Terry}$ 

#### Other statistical models on rankings

Several "natural" parametric distributions on  $\mathbb{S}_n$  exist.

•  $P(\pi) \propto \exp\left(-\sum_{j=1}^{n-1} \theta_j V_j(\pi)\right)$ 

• 
$$P(\pi) \propto \exp\left(-\sum_{i < j} \alpha_{ij} Q_{ij}(\pi)\right)$$

Generalized Mallows

Bradley-Terry

 $\mathsf{Mallows} \subset \mathsf{GM} \subset \mathsf{Bradley}\text{-}\mathsf{Terry}$ 

• item j has weight  $w_j > 0$ 

Plackett-Luce

Thurstone

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

$$P([a, b, \ldots]) \propto \frac{w_a}{\sum_{i'} w_{i'}} \frac{w_b}{\sum_{i'} w_{i'} - w_a} \cdots$$

• item j has utility  $\mu_j$ sample  $u_j = \mu_j + \epsilon_j$ , j = 1 : n independently sort  $(u_j)_{j=1:n} \Rightarrow \pi$ 

|                        | GM  | B-T | P-L | Т       |
|------------------------|-----|-----|-----|---------|
| Discrete parameter     | yes | no  | no  | no      |
| Tractable Z            | yes | no  | no  | no      |
| "Easy" * param         | yes | no  | no  | Gauss   |
| estimation             |     |     |     |         |
| Tractable marginals    | yes | no  | no  | Gauss** |
| Params "interpretable" | yes | no  | no  | Gauss   |

Refers to continuous parameters
 \*\* for top ranks

GM model

- computationally very appealing
- advantage comes from the code: the codes  $(V_j), (S_j)$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー のへで

• discrete parameter makes for challenging statistics

# Outline

- Statistical models for permutations and the dependence of ranks
- 2 Codes, inversion distance and the precedence matrix
- 3 Mallows models over permutations
- Maximum Likelihood estimation
  - The Likelihood
  - A Branch and Bound Algorithm
  - Related work, experimental comparisons
  - Mallows and GM and other statistical models

#### Top-t rankings and infinite permutations

#### 6 Statistical results

• Bayesian Estimation, conjugate prior, Dirichlet process mixtures

#### 7 Conclusions

#### Elections Ireland, n = 5, N = 1100

Roch Scal McAl Bano Nall Scal McAl Nall Bano Roch Roch McAl

#### College programs n = 533, N = 53737, t = 10

DC116 DC114 DC111 DC148 DB512 DN021 LM054 WD048 LM020 LM050 WD028 DN008 TR071 DN012 DN052 FT491 FT353 FT471 FT541 FT402 FT404 TR004 FT351 FT110 FT352

#### Bing search: UW Statistics $n ightarrow \infty$

```
www.stat.washington.edu/
www.stat.wisc.edu/
www.stat.washington.edu/courses
collegeprowler.com/university-of-washington/statistics
...
```

## Models for Infinite permutations

- Domain of items to be ranked is countable, i.e  $n \to \infty$
- **Observed** the top *t* ranks of an infinite permutation
- Examples
  - Bing UW Statistics www.stat.washington.edu/ www.stat.wisc.edu/ www.stat.washington.edu/courses collegeprowler.com/university-of-washington/statistics
  - searches in data bases of biological sequences (by e.g Blast, Sequest, etc)
  - open-choice polling, "grassroots elections", college program applications

《曰》 《聞》 《臣》 《臣》 三臣 …

- Mathematically more natural
  - for large *n*, models should not depend on *n*
  - models can be simpler, more elegant than for finite n

# Top-t rankings: $GM^S$ , $GM^V$ are not equivalent

 $\pi_0 = [a b c d]$  $\pi = [c a]$ 

$$\begin{aligned} \pi(1) &= c \quad S_1 = 2 \\ \pi(2) &= a \quad S_2 = 0 \\ \pi(3) &= ? \quad S_3 = ? \end{aligned} \qquad \begin{array}{c} \pi_0(1) &= a \quad V_1 = 1 \\ \pi_0(2) &= b \quad V_2 \geq 1 \\ \pi_0(3) &= c \quad V_3 = 0 \end{aligned} \\ P_{\pi_0, \vec{\theta}}(\pi) &= \prod_{i=1}^t e^{-\theta_i S_i} \end{aligned} \qquad \begin{array}{c} P_{\pi_0, \theta}(\pi) &= \prod_{i=1}^{n-1} \begin{cases} e^{-\theta V_i}, \\ \theta_i \in V_i \end{cases}$$

$$P_{\pi_0, heta}(\pi) = \prod_{j=1}^{n-1} \left\{ egin{array}{c} \mathrm{e}^{- heta V_j}, \ \pi_0(j) \in \pi \ P_{ heta}(V_j \ge v_j), \ \pi_0(j) 
ot 
otin \pi_0(j) 
otin \pi_0(j)$$

sufficient statistics

no sufficient statistics

Example: 
$$\pi = [ca]$$
  

$$Q(\pi) = \frac{\begin{vmatrix} a & b & c & d \\ \hline S_2 & - & 1 & 0 & 1 & a \\ 0 & - & 0 & ? & b \\ \hline S_1 & 1 & 1 & - & 1 & c \\ \hline 0 & ? & 0 & - & d \\ \hline V_1 & V_2 & V_3 & V_4 \end{vmatrix}$$

## The Infinite Generalized Mallows Model (IGM) [MBao08]

$$P_{\pi_{0},\vec{\theta}}(\pi) = \frac{1}{\prod_{j=1}^{t} Z(\theta_{j})} \exp\left[-\sum_{j=1}^{t} \theta_{j} S_{j}(\pi \mid \pi_{0})\right]$$

《曰》 《聞》 《臣》 《臣》 三臣 …

- distribution over top-t rankings
- $\pi_0$  is permutation of  $\{1, 2, 3, \ldots\}$ 
  - a discrete infinite "location" parameter
- $\theta_{1:t} > 0$  dispersion parameter
- product of t independent univariate distributions
- Normalization constant  $Z( heta_j) = 1/(1 e^{- heta_j})$
- $P_{\pi_0,\vec{\theta}}(\pi)$  is well defined marginal over the coset defined by  $\pi$

## IGM versus GM

$$P_{\pi_0,\vec{\theta}}(\pi) = \frac{1}{\prod_{j=1}^t Z(\theta_j)} \exp\left[-\sum_{j=1}^t \theta_j S_j(\pi \mid \pi_0)\right]$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

- all  $S_j$  have same range  $\{0, 1, 2, \ldots\}$
- Z has simpler formula
- only top-t rankings observed

## Sufficient statistics for top-t permutations [MBao09]

Sufficient statistics are  $t \ n \times n$  precedence matrices  $R_1, \ldots, R_t$ Lemma

$$S_{j}(\pi|\pi_{0}) = L_{\pi_{0}}(R_{j}(\pi))$$

$$R_{j}(\pi) = \frac{-}{\frac{-}{\frac{\pi(j)}{2} - \frac{\pi(j)}{2} - \frac{\pi(j)}{$$

(R<sub>j</sub>)<sub>kl</sub> = 1 iff item k at rank j and item l after k (observed or not)
(R<sub>1</sub>,...R<sub>t</sub>) sufficient statistics for multiple θ GM<sup>s</sup>
R = ∑<sub>j=1</sub><sup>t</sup> R<sub>j</sub> sufficient statistics for single θ Mallows<sup>s</sup> N = 2, n = 12 N = 100, n = 12, t = 5





< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ □

### Infinite Mallows Model: ML estimation

#### Theorem[M,Bao 08]

• Sufficient statistics 
$$\begin{array}{c} n & \# \text{ distinct items observed in data} \\ T & \# \text{ total items observed in data} \\ Q = [Q_{kl}]_{k,l=1:n} & \text{frequency of } k \prec l \text{ in data} \\ q = [q_k]_{k=1:n} & \text{frequency of } k \text{ in data} \\ \hline R = q\mathbf{1}^T - Q & \text{sufficient statistics matrix} \end{array}$$

- log-likelihood $(\pi_0, \theta) = \theta L_{\pi_0}(R) = \theta$  Sum (Lower triangle (R permuted by  $\pi_0$ ))
- The optimal  $\pi_0^{ML}$  can be found exactly by a B&B algorithm searching on matrix R.
- The optimal  $\theta^{ML}$  is given by

$$\theta = \log \left(1 + T/L_{\pi_0}(R)\right)$$

<ロト <回ト < 注ト < 注ト = 注

## Infinite GMM: ML estimation

#### Theorem [M,Bao 08]

• Sufficient statistics

| п                                           | # distinct items observed in data                 |
|---------------------------------------------|---------------------------------------------------|
| Nj                                          | # total permutations with length $\geq j$         |
| $Q^{(j)} = [Q_{kl}^{(j)}]_{k,l=1:n, j=1:t}$ | frequency of $1_{[\pi(k)=j, \pi(l) < j]}$ in data |
| $q^{(j)} = [q_k^{(j)}]_{k=1:n}$             | frequency of $k$ in rank $j$ in data              |
| $R^{(j)} = q^{(j)}1^T - Q^{(j)}$            | sufficient statistics matrices                    |

• For  $\theta_{1:t}$  given, the optimal  $\pi_0^{ML}$  can be found exactly by a B&B algorithm searching on matrix  $R(\vec{\theta}) = \sum_j \theta_j R^{(j)}$ .

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

- the cost is  $L_{\pi_0}(R) = \text{Sum}(\text{Lower triangle}(R(\vec{\theta}) \text{ permuted by } \pi_0))$
- The optimal  $\theta_j^{ML}$  is given by  $\theta_j = \log \left( 1 + N_j / L_{\pi_0}(R^{(j)}) \right)$

Hence, alternate maximization will converge to local optimum

## ML Estimation: Remarks

• sufficient statistics Q, q, R finite for finite sample size N but don't compress the data

メロト メヨト メヨト メ

- data determine only a finite set of parameters
  - $\pi_0$  restricted to the observed items
  - $\theta$  restricted to the observed ranks



• Similar result holds for finite domains
# Outline

- Statistical models for permutations and the dependence of ranks
- 2 Codes, inversion distance and the precedence matrix
- 3 Mallows models over permutations
- 4 Maximum Likelihood estimation
  - The Likelihood
  - A Branch and Bound Algorithm
  - Related work, experimental comparisons
  - Mallows and GM and other statistical models

#### 5 Top-t rankings and infinite permutations

- 6 Statistical results
  - Bayesian Estimation, conjugate prior, Dirichlet process mixtures

・ロト ・四ト ・ヨト ・ヨト

- E

Conclusions

# GM are exponential family models I

 $GM^V$  for complete rankings  $GM^S$  for top-t rankings, *n* finite or  $\infty$ 

- have finite sufficient statistics
- are exponential family models in  $\pi_0, \vec{ heta}$  '
- have conjugate priors

Hyperparameters

- $N_0 > 0$  equivalent sample size
- $Q^0$  (or  $R_i^0 \in \mathbb{R}^{n \times n}$  equivalent sufficient statistics

<ロト <回ト < 注ト < 注ト = 注

### The conjugate prior I

Hyperparameters:  $N_0 > 0$ ,  $Q^0$  (or  $R_j^0 \in \mathbb{R}^{n \times n}$ The conjugate prior (for  $GM^s$ , top-t, *n* finite or  $\infty$ )

• informative prior for both  $\pi_0, \vec{\theta}$ 

$$\begin{split} P_0(\pi_0, \vec{\theta}) &\propto e^{-N_0 \sum_{j=1}^t (\theta_j L_{\pi_0}(R_j^0) + \ln Z_j(\theta_j))} \\ &\propto e^{-N_0 \sum_{j=1}^t (\text{sum of lower triangle}(\Pi_0 R_j^0 \Pi_0^T \Theta) + \ln Z_j(\theta_j))} \\ &\propto e^{-N_0 D(P_{\pi_0^0, \vec{\theta}^0} || P_{\pi_0, \vec{\theta}})} \end{split}$$

with  $\pi_0^0, \vec{\theta}^0$  ML estimates of sufficient statistics  $R_{1:t}^0, \Pi_0$  the permutation matrix of  $\pi_0, \Theta$ =diagonal matrix of  $\vec{\theta}$ 

• non-informative for  $\pi_0$ 

$$P_0(\pi_0, \vec{\theta} | I_{1:t}, N_0) \propto e^{-N_0 \sum_{j=1}^t (\theta_j r_j + \ln Z_j(\theta_j))}$$

<ロト <回ト < 注ト < 注ト = 注

## Bayesian Inference: What operations are tractable?

**Posterior**  $P_0(\pi_0, \vec{\theta}) \propto e^{\sum_j (\theta_j(N_0 r_j + NL_{\pi_0}(R_j)) + (N_0 + N) \ln Z(\theta_j))}$ 

- $\bullet$  computing unnormalized prior, posterior  $\checkmark$
- computing normalization constant of prior, posterior ?
- MAP estimation: produces  $\pi_0^{Bayes}$ ,  $\vec{\theta}^{Bayes}$   $\checkmark$  (by B&B)
- model averaging  $P(\pi \mid N_0, r, \pi_{1:N}) = \sum_{\pi_0} \int_0^\infty GM^s(\pi \mid \pi_0, \theta) P(\pi_0, \theta \mid N_0, r, \pi_{1:N}) d\theta$ ?
- sample from  $P(\pi_0, \theta | N_0, r, \pi_{1:N})$  Sometimes

• Bayesian Non-Parameteric Clustering (aka Dirichlet Process Mixture Models DPMM)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

Is is efficient?

## Clustering with Dirichlet mixtures via MCMC

General DPMM estimation algorithm [Neal03] MCMC estimation for Dirichlet mixture Input  $\alpha, g_0, \beta, \{f\}, \mathcal{D}$ **State** cluster assignments c(i), i = 1 : n, parameters  $\theta_k$  for all distinct k **erate** for i = 1: n(reassign data to clusters) • if  $n_{c(i)} = 1$  delete this cluster and its  $\theta_{c(i)}$ 2 resample c(i) by  $c(i) = \begin{cases} \text{existing}k & \text{w.p } \propto \frac{n_k - 1}{n - 1 + \alpha} f(x_i, \theta_k) \\ \text{new cluster} & \text{w.p } \frac{\alpha}{\alpha - 1 + \alpha} \int f(x_i, \theta) g_0(\theta) d\theta \end{cases}$ (1)**3** if c(i) is new label, sample a new  $\theta_{c(i)}$  from  $g_0$ (resample cluster parameters) for  $k \in \{c(1:n)\}$ **()** sample  $\theta_k$  from posterior  $g_k(\theta) \propto g_0(\theta, \beta) \prod_{i \in C_k} f(x_i, \theta)$  $g_k$  can be computed in closed form if  $g_0$  is conjugate prior utput a state with high posterior

# Gibbs Sampling Algorithm for DPM of GM<sup>s</sup> [M,Chen 10]

#### **Input** Parameters $N_0$ , r, t, data $\pi_{1:n}$ ; initialization

Denote c(i) = cluster label of  $\pi_i$ ,  $\pi_{0c}$ ,  $\theta_c$ ,  $N_c$  the parameters and sample size for cluster c,  $N = \sum N_c$ 

Repeat

Reassign points to clustersFor all points π<sub>i</sub> resample c<sub>i</sub> resample c(i) by

$$c(i) = \begin{cases} \text{existing } c & \text{w.p } \propto \frac{n_k - 1}{n - 1 + N_0} P(\pi_i | \pi_{0c}, \ldots) \\ \text{new cluster} & \text{w.p } \frac{N_0}{n - 1 + N_0} Z_1 / n! \end{cases}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

2 Resample cluster parameters

For all clusters cSample  $\pi_{0c} \sim P(\pi_0; N_0, I, \pi_{i \in c})$  directly for  $N_c = 1$ , Gibbs  $\vec{\theta} | \pi_0, \pi_0 | \vec{\theta}$  for  $N_c > 1$ 

- We use Lemmas 1–5 (coming next)
  - to approximate the integrals
  - to sample
- Main Idea: replace GM<sup>s</sup> with simpler Infinite GM

### Integrating the posterior: some results I

Model  $GM^s$ ,  $n = \infty$ Prior uninformative  $P_0(\pi_0, \vec{\theta}) \propto e^{-N_0 \sum_j (\theta_j r_j + \ln Z(\theta_j))}$  (improper for  $\pi_0$ !)  $Z(\theta) = \frac{1}{1-e^{-\theta}}$ Data  $\pi_1, \dots \pi_N$  top-t rankings, sufficient statistics  $R_{1:t}$ , total observed items  $t \le n_{obs} \le Nt$ Posterior  $P_0(\pi_0, \vec{\theta}) \propto e^{\sum_j (\theta_j (N_0 r_j + NL_{\pi_0}(R_j)) + (N_0 + N) \ln Z(\theta_j))}$ Denote  $S_j = L_{\pi_0}(R_j)$ 

• Lemma 1[MBao08] Posterior of  $\pi_0$  and  $\theta_j | \pi_0$ 

$$P(\theta_j | \pi_0, N_0, r, \pi_{1:N}) = Beta(e^{-\theta_j}; N_0 r_j + S_j, N_0 + N + 1)$$

$$P(\pi_0|N_0, r, \pi_{1:N}) \propto \prod_{j=1} Beta(N_0r_j + S_j, N_0 + N + 1)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

### Integrating the posterior: some results II

• Lemma 2[MChen10] Normalized posterior for N = 1

$$Z_1 = \frac{(n-t)!}{n!}$$

• Lemma 3 Bayesian averaging over  $\vec{\theta}$ 

$$P(\pi|\pi_0, N_0, r, \pi_{1:N}) = \prod_{j=0}^t \frac{Beta(S_j(\pi|\pi_0) + N_0r_j + S_j, N_0 + N + 2)}{Beta(N_0r_j + S_j, N_0 + N + 1)}$$

• Lemma 4 Exact sampling of  $\pi_0 | \vec{\theta}$  from the posterior possible by stagewise sampling.

$$P(\pi_{0}|\vec{\theta}, N_{0}, r, \pi_{1:N}) \propto e^{-\sum_{j} \theta_{j}} \underbrace{\mathcal{L}_{\pi_{0}}(R_{j})}_{\mathcal{L}_{\pi_{0}}(R_{j})}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

### Integrating the posterior: some results III

 Posterior of π<sub>0</sub> informative only for items observed in π<sub>1:N</sub>, uniform over all other items.

Wanted: to sum out the permutation of the unobserved items.

Example:  $\pi = [c a b d]$ , data  $\pi_{1:N}$  contain  $obs = \{a, c, d, e, \ldots\}$  but not b

• Lemma 5

$$P(\pi \mid \pi_{0} \mid_{obs}) = \prod_{j:\pi(j) \in obs} Beta(S_{j}(\pi \mid \pi_{0}) + N_{0}r_{j} + S_{j}, N_{0} + N + 2)$$
$$\prod_{j:\pi(j) \notin obs} Beta(t_{j} + N_{0}r_{j} + S_{j}, N_{0} + N)$$
$$/\prod_{j=0}^{t} Beta(N_{0}r_{j} + S_{j}, N_{0} + N + 1)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

**Useful?** Good approximations for *n* finite

#### DPMM estimation artificial data

K = 15 clusters, n = 10, t = 6  $N = 30 \times K$ ,  $\theta_j = 1$ 



clustering over time K=10 t=6 15 clusters random initialization

## Ireland 2000 Presidential Election

- n = 5 candidates, votes=ranked lists of 5 or less
- individuals grouped by preferences

multimodal distribution

- clustering problem
  - parametric, model based: EM algorithm [Busse07]
  - nonparametric: EBMS Exponential Blurring Mean Shift [MBao08]
  - nonparametric, model based: DPMM Dirichlet Process Mixtures [MChen10]

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

## Ireland Presidential Election

n = 5, t = 1 : 5 N = 1083found 12 clusters, sizes 236,...,1



- Mary McAleese (Fianna Fail and Progressive Democrats)
- Rosemary Scallon (Independent)

<ロト <回ト < 注ト < 注ト = 注

- Derek Nally (Independent)
- Mary Banotti (Fine Gael)
- Adi Roche (Labour)

• Work in progress: this clustering different from [Murphy&Gormley]

# College program admissions, Ireland

#### n = 533 programs, N = 53737 candidates, t = 10 options

DC116 DC114 DC111 DC148 DB512 DN021 LM054 WD048 LM020 LM050 WD028 DN008 TR071 DN012 DN052 FT491 FT353 FT471 FT541 FT402 FT404 TR004 FT351 FT110 FT352

| Students pay  |
|---------------|
| price of exam |
| success as    |
| points jump   |

| ALC: NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | pade in containing lowing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| In the second se | Annual Constant<br>Annual Constan | Construction of the second |

High flyers' hopes dashed as points hit record highs

|                                  | the second se |                         |      |  |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------|------|--|
|                                  | This is all she as a                                                                                            | daia light day a trigen |      |  |
| stated on a particular data many | - the second                                                                                                    | 20.555114               |      |  |
| THE A ST THE ROADS.              | 100404                                                                                                          | Statute halos halo      | - 64 |  |
| CONTRACTOR CONTRACTOR            | 10.0                                                                                                            | The state of the        |      |  |
| IT NAME THAT BAT BATTLE          | 1040                                                                                                            | The local lines         |      |  |
| All part and the second second   | 10.01                                                                                                           | 22100                   |      |  |
| the of the day made              | Chaine .                                                                                                        | Barlinka Classes        | - 29 |  |
| and save argume a rationality    | A Reality                                                                                                       | Course have had         |      |  |
| 2404 00 KW008 (2                 | Manhorn .                                                                                                       | Reach of least's        | -0   |  |
| and comments and store from      | (Shanker)                                                                                                       | 200 Sec. 228            | - 64 |  |
| test a bi dettates of a choi-    | Manute pain                                                                                                     | - mm dias spin          |      |  |
| COLUMN TO WAR                    |                                                                                                                 |                         |      |  |

Masterclass students set new record for grades Minister insists school subjects are not being 'dunbed down'

All CLARKER CONTRACT OF ALL AND ALL AN

- Data = all candidates' rankings for college programs in 2000 from [GormleyMurphy03] (they used EM for Mixture of Plackett-Luce models)
- we [MChen10, Ali Murphy M Chen 10] used DPMM (parameters adjusted to ...

## College program rankings: are there clusters?



- 33 clusters cover 99% of the data
- $\vec{\theta_c}$  parameters large cluster are concentrated

・ロト ・日下 ・モート

• number of significant ranks in  $\sigma_c, \theta_c$  vary by cluster

# College program rankings: are the clusters meaningful?

| Cluster | Size | Description               | Male (%) | Points avg(std) |
|---------|------|---------------------------|----------|-----------------|
| 1       | 4536 | CS & Engineering          | 77.2     | 369 (41)        |
| 2       | 4340 | Applied Business          | 48.5     | 366 (40)        |
| 3       | 4077 | Arts & Social Science     | 13.1     | 384 (42)        |
| 4       | 3898 | Engineering (Ex-Dublin)   | 85.2     | 374 (39)        |
| 5       | 3814 | Business (Ex-Dublin)      | 41.8     | 394 (32)        |
| 6       | 3106 | Cork Based                | 48.9     | 397 (33)        |
|         |      |                           |          |                 |
| 33      | 9    | Teaching (Home Economics) | 0.0      | 417 (4)         |

< ロ > (四 > (四 > ( 三 > ( 三 > ) ) ) 문 ( - )

- Cluster differentiate by subject area
- ... also by geography
- ... show gender difference in preferences

# College program rankings: the "prestige" question

- Question: are choices motivated by "prestige" (i.e high point requirements (PR))?
- If yes, then PR should be decreasing along the rankings



- Unclustered data: PR decreases monotonically with rankings
- Clustered data: PR not always monotonic
  - Simpson's paradox!

# Summary: Contributions to the GM model

- For consensus ranking problem: New BB formulation
  - theoretical analysis tool:
    - intuition on problem hardness
    - admissible heuristics provide bounds on run time
  - competitive algorithm in practice
- For top-t rankings (single  $\theta$ )
  - given correct sufficient statistics all old algorithms can be used on it

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

- BB algorithm (theoretical and practical tool)
- For infinite number of items (single or multiple  $\theta$ )
  - introduced the Infinite GM model
  - given sufficient statistics, estimation algorithm
  - introduced conjugate prior, studied its properties
- Bayesian estimation/DPMM clustering (for finite top-t rankings)
  - efficient (approximate) Gibbs sampler for DPMM
- (not mentioned here)
  - confidence intervals, convergence rates
  - model selection (BIC for GMM)
  - EBMS non-parametric clustering
  - marginal calculation is polynomial

# Conclusions

Why GM model?

- Recongnized as good/useful in applications
- Complementarity:
  - Utility based ranking models (Thurstone)
  - Stagewise ranking models (GM) combinatorial
- Nice computational properties/Analyzable statistically

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

- The code grants GM it's tractability
  - representation with independent parameters

The bigger picture

- Statistical analysis of ranking data combines
  - combinatorics, algebra
  - algorithms
  - statistical theory

# Thank you

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

#### Extensive comparisons I

#### New experiment Websearch, all relevant algorithms

• Local Search, B&B,other



#### Extensive comparisons II

#### Websearch data, all relevant algorithms (detail)

• Local Search, B&B,other



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで

#### Extensive comparisons III

Websearch data, all relevant algorithms (more detail)

• Local Search, B&B,other



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

#### Extensive comparisons IV

Ranks of B&B algorithms among all other algorithms (cost)



▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー のへで

### Sufficient statistics spaces I

• space of sufficient statistics  $Q = \{Q = \sum_{1=1}^{n} Q(\pi_i)\} = \operatorname{convex}(\mathbb{S}_n)$  $Q = \operatorname{convex}_{1+n(n-1)/2}(\mathbb{S}_n)$  by Caratheodory's Thm

• space of means (marginal polytope) of GM model  $\mathcal{M} = \{ E_{\pi_0,\theta}[Q] \}$ 

characterized algorithmically [M&al07]; [Mallows 57] for Mallows

- GM model is curved exponential family
- Full exponential family = Bradley-Terry model
  - not tractable/ loses nice computational/ interpretational properties
- GM ⊂ full model [Fligner, Verducci 88] ⊂ Bradley-Terry
  - open problem: tractable (exact) ML estimation of full model, Bradley-Terry model  $\propto \exp\left(-\sum_{i < j} \alpha_{ij} Q_{ij}(\pi)\right)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

• heuristic [Fligner, Verducci 88] works reasonably well for full model

## Consistency and unbiasedness of ML estimates I

- $Q_{ij}/N \rightarrow P[\text{item } i \prec_{\pi_0} \text{item} j]$  as  $N \rightarrow \infty$  [FV86]
- Therefore
  - for any  $\pi_0$  fixed,  $\vec{\theta}^{ML}$  is consistent [FV86]
  - the discrete parameter  $\pi_0^{ML}$  consistent when  $\theta_j$  non-increasing [FV86, M in preparation] (joint work with Hoyt Koepke)
    - is it "unbiased"?
- Theorem 1[M, in preparation] For any N finite

$$E[\theta^{ML}] > \theta$$
 Bias!

< ロ > (四 > (四 > ( 三 > ( 三 > ) ) ) 문 ( - )

and the order of magnitude of  $\theta^{\textit{ML}}-\theta$  is  $\frac{1}{\sqrt{N}}$  w.h.p.

# The Bias of $\theta^{ML}$

0.3

2

з

4

5

6

7

8

- artificial data from Infinite GM
- $\theta_j$  estimates for j = 1: 8 and sample sizes N = 200, 2000



## Convergence rates [M, in preparation] I

**Theorem 2** For the Mallows (single  $\theta$ ) model, and sample size N sufficiently large

$$(\sqrt{2ch(\theta)})^{-N} \leq P[\pi_0^{ML} \neq \pi_0] \leq \frac{n(n-1)}{2} \left(\sqrt{2ch(\theta)}\right)^{-N}$$

**Theorem 3** For the GM model, with  $\vec{\theta} > 0$  strongly unimodal,  $\vec{\theta}, \pi_0$  unknown

$$P[\pi_0^{ML} \neq \pi_0] = \mathcal{O}\left(e^{-c(\vec{\theta})N}\right)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

confidence interval for θ in the Mallows model from Theorem 2
confidence interval for θ? in progress