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Permutations (rankings) data represents preferences

Burger preferences
n = 6,N = 600
med-rare med rare ...

done med-done med ...

med-rare rare med ...

Elections Ireland,n = 5,N = 1100
Roch Scal McAl Bano Nall

Scal McAl Nall Bano Roch

Roch McAl

College programs n = 533,N = 53737, t = 10
DC116 DC114 DC111 DC148 DB512 DN021 LM054 WD048 LM020 LM050

WD028

DN008 TR071 DN012 DN052

FT491 FT353 FT471 FT541 FT402 FT404 TR004 FT351 FT110 FT352

Ranking data

discrete

many valued

combinatorial structure



The Consensus Ranking problem

Given a set of rankings {π1, π2, . . . πN} ⊂ Sn find the consensus ranking (or
central ranking) π0 that best agrees with the data

Elections Ireland,n = 5,N = 1100
Roch Scal McAl Bano Nall

Scal McAl Nall Bano Roch

Roch McAl

Consensus = [ Roch Scal McAl Bano Nall ] ?



The Consensus Ranking problem

Problem (also called Preference Aggregation, Kemeny Ranking)
Given a set of rankings {π1, π2, . . . πN} ⊂ Sn find the consensus ranking (or
central ranking) π0 such that

π0 = argmin
Sn

N∑
i=1

d(πi , π0)

for d = inversion distance / Kendall τ -distance / “bubble sort” distance

Relevance

voting in elections (APA, Ireland, Cambridge), panels of experts (admissions,
hiring, grant funding)

aggregating user preferences (economics, marketing)

subproblem of other problems (building a good search engine: leaning to rank
[Cohen, Schapire,Singer 99])

Equivalent to finding the “mean” or “median” of a set of points

Fact: Consensus ranking for the inversion distance is NP hard
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Consensus ranking problem

π0 = argmin
Sn

N∑
i=1

d(πi , π0)

This talk

Will generalize the problem

from finding π0

to estimating statistical model

Will generalize the data

From complete, finite permutations
to top-t rankings, countably many items (n→∞). . .
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Some notation

Base set { a, b, c , d } contains n items (or alternatives)
E.g { rare, med-rare, med, med-done, . . .}

Sn = the symmetric group = the set of all permutations over n items

π = [ c a b d ] ∈ Sn a permutation/ranking

π = [ c a ] a top-t ranking (is a partial order)

t = |π| ≤ n the length of π

We observe
data π1, π2, . . . , πN ∼ sampled independently from distribution P over Sn

(where P is unknown)



Representations for permutations

reference permutation id = [ a b c d ]

π = [ c a b d ] ranked list
(2 3 1) cycle representation

a b c d

[ 2 3 1 4 ]
function on {a, b, c , d}

Π =

0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

permutation matrix

Q =

− 1 0 1
0 − 0 1
1 1 − 1
0 0 0 −

precedence matrix, Qij = 1 if i ≺π j ,

(V1,V2,V3) = (1, 1, 0) code
(s1, s2, s3) = (2, 0, 0)
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Thurstone: Ranking by utility

The Thurstone Model

item j has expected utility µj

sample uj = µj + εj , j = 1 : n (independently or not)
uj is the actual utility of item j

sort (uj)j=1:n to obtain a π

rich model class

typically εj ∼ Normal(0, σ2
j )

parameters interpretable

some simple probability calculations are intractable

P[a ≺ b]] tractable, P[i in first place] tractable
P[i in 85th place] intractable

each rank of π depends on all the εj
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Plackett-Luce: Ranking as drawing without replacement

The Plackett-Luce model

item j has weight wj > 0

P([a, b, . . .]) ∝ waP
i′ wi′

wbP
i′ wi′ − wa

. . .

items are drawn “without replacement” from distribution (w1, w2 . . .wn)
(Markov chain)

normalization constant Z generally not known

distribution of first ranks approximately independent

item at rank j depends on all previous ranks



Bradley-Terry: penalizing inversions

The Bradley-Terry model

P(π) ∝ exp

−∑
i<j

αijQij(π)


exponential family model

one parameter for every pair )i , j)

αij is penalty for inverting i with j
only qualitative interpretation

normalization constant Z generally not known

transitivity i ≺ j , j ≺ k =⇒ i ≺ k
therefore the sufficient statistics Qij are dependent

Mallows models
are a subclass of Bradley-Terry models
do not suffer from this dependence
coming next. . .
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The precedence matrix Q

π = [ c a b d ]

Q(π) =

a b c d
− 1 0 1 a
0 − 0 1 b
1 1 − 1 c
0 0 0 − d

Qij(π) = 1 iff i before j in π

Qij = 1− Qji

reference permutation id = [ a b c d ]: determines the order of rows, columns in Q



The number of inversions and Q

π = [ c a b d ]

Q(π) =

a b c d

− 1 0 1 a
0 − 0 1 b
1 1 − 1 c
0 0 0 − d

define

L(Q) =
∑

i>j Qij = sum( lower triangle (Q))

then

#inversions(π) = L(Q) = d(π, id)
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The inversion distance and Q

π = [ c a b d ],
Refence permutation
id = [ a b c d ]

Q(π)

a b c d

− 1 0 1 a
0 − 0 1 b
1 1 − 1 c
0 0 0 − d

d(π, id) = 2

Reference permutation
π0 = [ b a d c ]

ΠT
0 Q(π)Π0

b a d c

− 0 1 0 b
1 − 1 0 a
0 0 − 0 d
1 1 1 − c

d(π, π0) = 4



The inversion distance and Q

To obtain d(π, π0)
1 Construct Q(π)

2 Sort rows and columns by π0

3 Sum elements in lower triangle

Note also that
To obtain
d(π1, π0) + d(π2, π0) + . . .

1 Construct Q(π1),Q(π2), . . .

2 Sum
Q = Q(π1) + Q(π2) + . . .

3 Sort rows and columns of Q
by π0

4 Sum elements in lower
triangle of Q

π = [ c a b d ], π0 = [ b a d c ]

b a d c

− 0 1 0 b
1 − 1 0 a
0 0 − 0 d
1 1 1 − c

d(π, π0) = 4
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A decomposition for the inversion distance

d(π, π0) = # inversions between π and π0

d([ c a b d ], [ b a d c ]) = # (inversions w.r.t b)︸ ︷︷ ︸
V1

+ # (inversions w.r.t a)︸ ︷︷ ︸
V2

+ # ( inversions w.r.t d)︸ ︷︷ ︸
V3

+ . . .

Vj = # inversions where π0(j) is disfavored



The code of a permutation

Example π = [ c a b d ], π0 = [ b a d c ]

a b c d

S2 − 1 0 1 a
S3 0 − 0 1 b
S1 1 1 − 1 c
S4 0 0 0 − d

V1 V2 V3 V4

code

(V1,V2,V3) = ( 1, 1, 0 )

or

(S1, S2, S3) = ( 2, 0, 0 )

d(π, id) = 2

Codes are defined w.r.t any π0

b a d c

S3 − 0 1 0 b
S2 1 − 1 0 a
S4 0 0 − 0 d
S1 1 1 1 − c

V1 V2 V3 V4

code Vj(π|π0), Sj(π|π0)

(V1,V2,V3) = ( 2, 1, 1 )

or

(S1, S2,S3) = ( 3, 1, 0 )

d(π, π0) = 4
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Codes and inversion distance summary

Inversion distance facts

d(π, π0) =
∑

j Vj(π|π0) =
∑

j Sj(π|π0)

d(π, π0) = L(ΠT
0 Q(π)Π0)

def
= Lπ0 (Q(π))

Codes facts
(V1:n−1) or (S1:n−1) defined w.r.t any reference permutation

we denote them Vj(π|π0) or Sj(π|π0)

(V1:n−1) or (S1:n−1) uniquely represent π
with n − 1 independent parameters

b a d c

S3 − 0 1 0 b
S2 1 − 1 0 a
S4 0 0 − 0 d
S1 1 1 1 − c

V1 V2 V3 V4

(V1,V2,V3) = ( 2, 1, 1 )
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The Mallows Model

The Mallows model is a distribution over Sn defined by

Pπ0,θ(π) =
1

Z (θ)
e−θd(π,π0)

π0 is the central permutation

π0 mode of Pπ0,θ, unique if θ > 0

θ ≥ 0 is a dispersion parameter

for θ = 0, Pπ0,0 is uniform over Sn

d(π, π0) =
∑

j Vj(π|π0) therefore Pπ0,θ is product of Pθ(Vj(π|π0)

Pπ0,θ(π) =
1

Z (θ)

n−1∏
j=1

e−θVj (π|π0) and Z (θ) =
n−1∏
j=1

1− e−θ(n−j+1)

1− e−θ︸ ︷︷ ︸
Zj (θ)
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The Generalized Mallows (GM) Model [Fligner, Verducci
86]

Mallows model Pπ0,θ
(π) = 1

Zθ
exp
“
−θ
Pn−1

j=1 Vj (π|π0)
”

Idea: θ → ~θ = (θ1, θ2, . . . θn−1)
Generalized Mallows(GM) model

Pπ0,~θ
(π) =

1

Z (~θ)

n−1∏
j=1

e−θjVj (π|π0) with Z (~θ) =
n−1∏
j=1

Zj(θj)

Similar definitions with Sj instead of Vj : models denoted GMV , GMS Cost
interpretation of the GM models

GMV : Cost =
∑

j θjVj

pay price θj for every inversion w.r.t item j

GMS : Cost =
∑

j θjSj

pay price θj for every inversion in picking rank j

Assume stepwise construction of π: θj represents importance of step j
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The (Max Likelihood) estimation problem

Burger preferences n = 6,N = 600
med-rare med rare ...

done med-done med ...

med-rare rare med ...

Data {πi}i=1:N i.i.d. sample from Sn

Model Mallows Pπ0,θ or GM Pπ0,~θ

Parameter estimation: π0 known,estimate θ or ~θ.

This problem is easy (convex, univariate)

Central permutation estimation: ~θ known, estimate π0

Known as Consensus ranking if θ = 1 (≈MinFAS )

This problem is NP hard. (many heuristic/approx. algorithms exist)

General estimation: estimate both π0 and θ or ~θ.
...at least as hard as consensus ranking. Will show it’s no harder.



The likelihood

Likelihood of π0, θ = P[ data |π0, θ ]

Max Likelihood estimation π0
∗, θ∗ = argmax P[ data |π0, θ ]

Mallows

logl(θ, π0) =
1

N
ln P(π1:N ; θ, π0) = −θ

n−1X
j=1

PN
i=1 Vj(π|π0)

N
+

n−1X
j=1

ln Zj(θ)

Generalized Mallows

logl(θ, π0) =
1

N
ln P(π1:N ; θ, π0) = −

n−1X
j=1

[θj

V̄jz }| {PN
i=1 Vj(πi |π0)

N
+ ln Zj(θj)]

Likelihood is separable and concave in each θj =⇒ estimation of θj is
straightforward

by convex minimization of θj V̄j + ln Zj(θj) (numerical)

Dependence on π0 complicated
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ML Estimation of π0: costs and main results

π1:N complete rankings π1:t top-t rankings, N ≤ ∞
(GMs ,GMV ) (only GMs)

Mallows
∑n−1

j=1

P
i Vj (π|π0)

N

∑t
j=1

P
i Sj (π|π0)

N

GM
∑n−1

j=1

[
θj
P

i Vj (πi |π0)
N + ln Zj (θj )

] ∑t
j=1

[
θj
P

i Sj (πi |π0)
N + ln Zj (θj )

]
Mallows [M&al07] π0

ML can be found ex-
actly by B&B search on matrix
Q(π1:N).

[MBao08] π0
ML can be found ex-

actly by B&B search on matrix
R(π1:N).

GM [M&al07] π0
ML, ~θML can be

found exactly by B&B search on
matrix Q(π1:N).

[MBao08] A local maximum for

π0, ~θ can be found by alternate
maximization: π0|~θ by B&B,
~θ|π0 by convex unidimensional.

Q(π1:N) =
∑

i=1:N Q(πi ) R(π1:N) =
∑

i=1:N R(πi ) (defined next)
B&B = branch-and-bound

• the search may not be tractable



Sufficient statistics (complete permutations) [M&al07]

Q(π) Q for large samples from Mallows models
θ = 1 θ = 0.3 θ = 0.03

− 0 1 0
1 − 1 0
0 0 − 0
1 1 1 −

Define Q ≡ Q(π1:N) = 1
N

∑N
i=1 Q(πi )

Sufficient statistics are sum of preference matrices for data



Search Algorithm Idea

Wanted: argminπ0
L(ΠT

0 QΠ0) = argminπ0
Lπ0(Q) = argmin lower triangle of Q

over all row and column permutations

. . .

. . .
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The Branch-and-Bound Algorithm

Key observation: cost of each decision can

be computed locally at node.
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Branch and Bound algorithm

Node ρ stores: rj , parent , j = |ρ|, Vj(ρ), θj , C(ρ), L(ρ); S = priority queue with nodes
to be expanded.

Initialize: S = {ρ∅}, ρ∅ =the empty sequence, j = 0, C(ρ∅) = V (ρ∅) = L(ρ∅) = 0

Repeat

remove ρ ∈ argmin
ρ∈S

L(ρ) from S

if |ρ| = n (Return) Output ρ, L(ρ) = C(ρ) and Stop.

else (Expand ρ)

for rj+1 ∈ [n] \ ρ create node ρ′ = ρ|rj+1, Vj+1(ρ′) = Vj(r1:j−1, rj+1)− Qrj rj+1

compute V min = min
rj+1∈[n]\ρ

Vj+1(ρ|rj+1)

calculate A(ρ) admissible heuristic [MandhaniM09]
for rj+1 ∈ [n] \ ρ

calculate θj+1 from n − j − 1,Vj+1(ρ′))
C(ρ′) = C(ρ) + θj+1Vj+1(ρ′), L(ρ′) = C(ρ′) + A(ρ),
store node (ρ′, j + 1, Vj+1, θj+1, C(ρ′), L(ρ′)) in S



ML Estimation of π0: costs and main results

π1:N complete rankings π1:t top-t rankings, N ≤ ∞
(GMs ,GMV ) (only GMs)

Mallows
∑n−1

j=1

P
i Vj (π|π0)

N

∑t
j=1

P
i Sj (π|π0)

N

GM
∑n−1

j=1

[
θj
P

i Vj (πi |π0)
N + ln Zj (θj )

] ∑t
j=1

[
θj
P

i Sj (πi |π0)
N + ln Zj (θj )

]
Mallows [M&al07] π0

ML can be found ex-
actly by B&B search on matrix
Q(π1:N).

[MBao08] π0
ML can be found ex-

actly by B&B search on matrix
R(π1:N).

GM [M&al07] π0
ML, ~θML can be

found exactly by B&B search on
matrix Q(π1:N).

[MBao08] A local maximum for

π0, ~θ can be found by alternate
maximization: π0|~θ by B&B,
~θ|π0 by convex unidimensional.

Q(π1:N) =
∑

i=1:N Q(πi ) R(π1:N) =
∑

i=1:N R(πi ) (defined next)
B&B = branch-and-bound

• the search may not be tractable



Algorithm summary

Sufficient statistics = Q(π1:N)

Cost(π0, θ) = θLπ0 (Q(π1:N)) (lower triangle of Q after permuting rows and
columns by π0

B&B Algorithm constructs π0 one rank at a time

Exact but not always tractable

B&B Algorithms exist also for

GMS

for multiple parameters ~θ

Performance issues

Admissible heuristics help
Beam search and other approximations possible



What makes the search hard (or tractable)?

Running time = time( compute Q ) + time( B&B )
O(n2N) independent of N

Number nodes explored by B&B

independent of sample size N
independent of π0

depends on dispersion ~θML

~θ = 0 ⇒ uniform distribution

all branches have equal cost

θML
1:n−1 large ⇒ likelihood decays fast around π0

ML ⇒ pruning efficient

Theoretical results

e.g if θj > Tj , j = 1 : n − 1, then B&B search defaults to greedy

Practically

diagnoses possible during B&B run



Admissible heuristics

To guarantee optimality we need lower bounds for the cost-to-go (admissible
heuristics)

admissible heuristic for Mallows Model [MPPB07]

improved heuristic for Mallows model [Mandhani,M 09], first admissible
heuristic for GMM model

If data ∼ Pθ,π0 with θ large, admissible heuristic A known ⇒ number of
expanded nodes is bounded above



Related work I

ML Estimation

[FV86] ~θ estimation; heuristic for π0

FV algorithm/Borda rule

1 Compute q̄j , j = 1 : n column sums of Q

2 Sort (q̄j)
n
j=1 in increasing order; π0 is sorting permutation

q̄j are Borda counts

FV is consistent for infinite N



Related work II

Consensus Ranking (θ = 1)

[CSS99] CSS algorithm = greedy search on Q
improved by extracting strongly connected components

[Ailon,Newman,Charikar 05] Randomized algorithm guaranteed 11/7 factor

approximation (ANC)

[Mohri, Ailon 08] linear program

[Mathieu, Schudy 07] (1 + ε) approximation, time O(n6/ε+ 22O(1/ε)

)

[Davenport,Kalagnanan 03] Heuristics based on edge-disjoint cycles used by

our B&B implementation

[Conitzer,D,K 05] Exact algorithm based on integer programming, better
bounds for edge disjoint cycles (DK)

[Betzler,Brandt, 10] Exact problem reductions

Most of this work based on the MinFAS view

Qij > .5 ⇔ i• Qij−.5−→ •j

Prune graph to a DAG removing minimum weight



Related work III

Extensions and applications to social choice

Inferring rakings under partial and aggregated information [ShahJabatula08],
[JabatulaFariasShah10]

Vote elicitation under probabilistic models of choice [LuBoutillier11]

Voting rules viewed as Maximum Likelihood [ConitzerSandholm08]

. . .



When is the B&B search tractable? I

Excess cost w.r.t B&B; data from Mallows model n = 100, N = 100

hard (uninteresting?) interesting easy



Running time vs number items n

Data generated from Mallows(θ)

10
−3

10
−2

10
−1

10
0

10
0

10
1

10
2

10
3

10
4

 

 

15 items
25 items
50 items

θ



Extensive comparisons

Experimental setup from [Coppersmith&al07]. Experiments by Alnur Ali [AliM11]

Data: artificial (Mallows and Plackett-Luce), Ski, Web-search

total 45 data sets, n = 50 . . . 350, N = 4 . . . 100 typically

Algorithms ILP, LP, B&B (with limited queue), Local Search (LS), FV/Borda,
QuickSort (QS), . . . and combinations (total 104 algorithms)

Websearch data B&B is competitive ( Local Search, B&B,other )



Other statistical models on rankings

Several “natural” parametric distributions on Sn exist.

P(π) ∝ exp
(
−
∑n−1

j=1 θjVj(π)
)

Generalized Mallows

P(π) ∝ exp
(
−
∑

i<j αijQij(π)
)

Bradley-Terry

Mallows ⊂ GM ⊂ Bradley-Terry

item j has weight wj > 0 Plackett-Luce

P([a, b, . . .]) ∝ waP
i′ wi′

wbP
i′ wi′ − wa

. . .

item j has utility µj Thurstone
sample uj = µj + εj , j = 1 : n independently
sort (uj)j=1:n ⇒ π
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GM B-T P-L T
Discrete parameter yes no no no
Tractable Z yes no no no
“Easy”∗ param yes no no Gauss
estimation
Tractable marginals yes no no Gauss∗∗

Params “interpretable” yes no no Gauss

∗ Refers to continuous parameters
∗∗ for top ranks

GM model

computationally very appealing

advantage comes from the code: the codes (Vj), (Sj)

discrete parameter makes for challenging statistics
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Top-t rankings and very many items

Elections Ireland,n = 5,N = 1100
Roch Scal McAl Bano Nall

Scal McAl Nall Bano Roch

Roch McAl

College programs n = 533,N = 53737, t = 10
DC116 DC114 DC111 DC148 DB512 DN021 LM054 WD048 LM020 LM050

WD028

DN008 TR071 DN012 DN052

FT491 FT353 FT471 FT541 FT402 FT404 TR004 FT351 FT110 FT352

Bing search: UW Statistics n → ∞
www.stat.washington.edu/

www.stat.wisc.edu/

www.stat.washington.edu/courses

collegeprowler.com/university-of-washington/statistics

...



Models for Infinite permutations

Domain of items to be ranked is countable, i.e n → ∞
Observed the top t ranks of an infinite permutation

Examples

Bing UW Statistics

www.stat.washington.edu/

www.stat.wisc.edu/

www.stat.washington.edu/courses

collegeprowler.com/university-of-washington/statistics

...
searches in data bases of biological sequences (by e.g Blast, Sequest, etc)
open-choice polling, ”grassroots elections”, college program applications

Mathematically more natural

for large n, models should not depend on n
models can be simpler, more elegant than for finite n



Top-t rankings: GMS , GMV are not equivalent

π0 = [ a b c d ]
π = [ c a ]

π(1) = c S1 = 2
π(2) = a S2 = 0
π(3) = ? S3 = ?

Pπ0,~θ
(π) =

∏t
j=1 e−θjSj

π0(1) = a V1 = 1
π0(2) = b V2≥ 1
π0(3) = c V3 = 0

Pπ0,θ(π) =
∏n−1

j=1

{
e−θVj , π0(j)∈π

Pθ(Vj≥vj ), π0(j) 6∈π

sufficient statistics no sufficient statistics

Example: π = [ c a ]

Q(π) =

a b c d
S2 − 1 0 1 a

0 − 0 ? b
S1 1 1 − 1 c

0 ? 0 − d
V1 V2 V3 V4



The Infinite Generalized Mallows Model (IGM) [MBao08]

Pπ0,~θ
(π) =

1∏t
j=1 Z (θj)

exp

− t∑
j=1

θjSj(π |π0)


distribution over top-t rankings

π0 is permutation of {1, 2, 3, . . .}
a discrete infinite “location” parameter

θ1:t > 0 dispersion parameter

product of t independent univariate distributions

Normalization constant Z (θj) = 1/(1− e−θj )

Pπ0,~θ
(π) is well defined marginal over the coset defined by π



IGM versus GM

Pπ0,~θ
(π) =

1∏t
j=1 Z (θj)

exp

− t∑
j=1

θjSj(π |π0)


all Sj have same range {0, 1, 2, . . .}
Z has simpler formula

only top-t rankings observed



Sufficient statistics for top-t permutations [MBao09]

Sufficient statistics are t n × n precedence matrices R1, . . .Rt

Lemma
Sj(π|π0) = Lπ0 (Rj(π))

Rj(π) =

−
−

π(j) 0 1 − 1
−

(Rj)kl = 1 iff item k at rank j and item l after k (observed or not)
(R1, . . .Rt) sufficient statistics for multiple θ GMs

R =
∑t

j=1 Rj sufficient statistics for single θ Mallowss

N = 2, n = 12 N = 100, n = 12, t = 5

 

 

0

0.5

1

1.5

2

2.5

 

 

0

10

20

30

40

50

60

70



Infinite Mallows Model: ML estimation

Theorem[M,Bao 08]

Sufficient statistics

n # distinct items observed in data
T # total items observed in data
Q = [Qkl ]k,l=1:n frequency of k ≺ l in data
q = [qk ]k=1:n frequency of k in data

R = q1T − Q sufficient statistics matrix

log-likelihood(π0, θ) = θLπ0 (R) = θ Sum (Lower triangle (R permuted by
π0))

The optimal π0
ML can be found exactly by a B&B algorithm searching on

matrix R.

The optimal θML is given by

θ = log (1 + T/Lπ0 (R))



Infinite GMM: ML estimation

Theorem [M,Bao 08]

Sufficient statistics
n # distinct items observed in data
Nj # total permutations with length ≥ j

Q(j) = [Q
(j)
kl ]k,l=1:n, j=1:t frequency of 1[π(k)=j, π(l)<j] in data

q(j) = [q
(j)
k ]k=1:n frequency of k in rank j in data

R(j) = q(j)1T − Q(j) sufficient statistics matrices

For θ1:t given, the optimal π0
ML can be found exactly by a B&B algorithm

searching on matrix R(~θ) =
∑

j θjR
(j).

the cost is Lπ0 (R) = Sum(Lower triangle(R(~θ) permuted by π0))

The optimal θj
ML is given by θj = log

(
1 + Nj/Lπ0 (R(j))

)
Hence, alternate maximization will converge to local optimum



ML Estimation: Remarks

sufficient statistics Q, q, R finite for finite sample size N
but don’t compress the data

data determine only a finite set of parameters

π0 restricted to the observed items
θ restricted to the observed ranks

Similar result holds for finite domains
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GM are exponential family models I

GMV for complete rankings
GMS for top-t rankings, n finite or ∞

have finite sufficient statistics

are exponential family models in π0, ~θ ‘

have conjugate priors

Hyperparameters

N0 > 0 equivalent sample size

Q0 (or R0
j )∈ Rn×n equivalent sufficient statistics



The conjugate prior I

Hyperparameters: N0 > 0, Q0 (or R0
j )∈ Rn×n

The conjugate prior (for GMs , top-t, n finite or ∞)

informative prior for both π0, ~θ

P0(π0, ~θ) ∝ e−N0
Pt

j=1(θjLπ0
(R0

j )+ln Zj (θj ))

∝ e−N0
Pt

j=1(sum of lower triangle( Π0R
0
j ΠT

0 Θ)+ln Zj (θj ))

∝ e
−N0D(P

π0
0,~θ0 ||Pπ0,

~θ
)

with π0
0, ~θ0 ML estimates of sufficient statistics R0

1:t , Π0 the permutation

matrix of π0, Θ=diagonal matrix of ~θ

non-informative for π0

P0(π0, ~θ|l1:t ,N0) ∝ e−N0
Pt

j=1(θj rj +ln Zj (θj ))



Bayesian Inference: What operations are tractable?

Posterior P0(π0, ~θ) ∝ e
P

j (θj (N0rj +NLπ0
(Rj ))+(N0+N) ln Z(θj ))

computing unnormalized prior, posterior X
computing normalization constant of prior, posterior ?
MAP estimation: produces π0

Bayes , ~θBayes X (by B&B)

model averaging
P(π |N0, r , π1:N) =

∑
π0

∫∞
0

GMs(π|π0, θ)P(π0, θ|N0, r , π1:N)dθ ?

sample from P(π0, θ|N0, r , π1:N) Sometimes

Bayesian Non-Parameteric Clustering (aka Dirichlet Process Mixture Models
DPMM)

Is is efficient?



Clustering with Dirichlet mixtures via MCMC

General DPMM estimation algorithm [Neal03]

MCMC estimation for Dirichlet mixture

Input α, g0, β, {f }, D
State cluster assignments c(i), i = 1 : n,

parameters θk for all distinct k
Iterate 1 for i = 1 : n(reassign data to clusters)

1 if nc(i) = 1 delete this cluster and its θc(i)
2 resample c(i) by

c(i) =

(
existingk w.p ∝ nk−1

n−1+α
f (xi , θk )

new cluster w.p α
n−1+α

R
f (xi , θ)g0(θ)dθ

(1)

3 if c(i) is new label, sample a new θc(i) from g0

2 (resample cluster parameters)
for k ∈ {c(1 : n)}

1 sample θk from posterior gk (θ) ∝ g0(θ, β)
Q

i∈Ck
f (xi , θ)

gk can be computed in closed form if g0 is conjugate prior

Output a state with high posterior



Gibbs Sampling Algorithm for DPM of GM s [M,Chen 10]

Input Parameters N0, r , t, data π1:n; initialization
Denote c(i) = cluster label of πi , π0c , θc ,Nc the parameters and sample size
for cluster c , N =

∑
Nc

Repeat
1 Reassign points to clustersFor all points πi resample ci

resample c(i) by

c(i) =

(
existing c w.p ∝ nk−1

n−1+N0
P(πi |π0c , . . .)

new cluster w.p N0
n−1+N0

Z1/n!

2 Resample cluster parameters
For all clusters c
Sample π0c ∼ P(π0; N0, l , πi∈c) directly for Nc = 1, Gibbs ~θ|π0, π0|~θ for
Nc > 1

We use Lemmas 1–5 (coming next)

to approximate the integrals
to sample

Main Idea: replace GMs with simpler Infinite GM



Integrating the posterior: some results I

Model GMs , n =∞
Prior uninformative P0(π0, ~θ) ∝ e−N0

P
j (θj rj +ln Z(θj )) (improper for π0!)

Z (θ) = 1
1−e−θ

Data π1, . . . πN top-t rankings, sufficient statistics R1:t , total observed items
t ≤ nobs ≤ Nt
Posterior P0(π0, ~θ) ∝ e

P
j (θj (N0rj +NLπ0

(Rj ))+(N0+N) ln Z(θj ))

Denote Sj = Lπ0 (Rj)

Lemma 1[MBao08] Posterior of π0 and θj |π0

P(θj |π0,N0, r , π1:N) = Beta(e−θj ; N0rj + Sj ,N0 + N + 1)

P(π0|N0, r , π1:N) ∝
t∏

j=1

Beta(N0rj + Sj ,N0 + N + 1)



Integrating the posterior: some results II

Lemma 2[MChen10] Normalized posterior for N = 1

Z1 =
(n − t)!

n!

Lemma 3 Bayesian averaging over ~θ

P(π|π0,N0, r , π1:N) =
t∏

j=0

Beta(Sj(π|π0) + N0rj + Sj ,N0 + N + 2)

Beta(N0rj + Sj ,N0 + N + 1)

Lemma 4 Exact sampling of π0 | ~θ from the posterior possible by stagewise
sampling.

P(π0|~θ,N0, r , π1:N) ∝ e−
P

j θj

V̄j (π0)︷ ︸︸ ︷
Lπ0 (Rj)



Integrating the posterior: some results III

Posterior of π0 informative only for items observed in π1:N , uniform over all
other items.
Wanted: to sum out the permutation of the unobserved items.
Example: π = [ c a b d ], data π1:N contain obs = {a, c , d , e, . . .} but not b

Lemma 5

P(π |π0|obs) =
∏

j :π(j)∈obs

Beta(Sj(π|π0) + N0rj + Sj ,N0 + N + 2)

∏
j :π(j) 6∈obs

Beta(tj + N0rj + Sj ,N0 + N)

/

t∏
j=0

Beta(N0rj + Sj ,N0 + N + 1)

Useful? Good approximations for n finite



DPMM estimation artificial data

K = 15 clusters, n = 10, t = 6 N = 30× K , θj = 1



Ireland 2000 Presidential Election

n = 5 candidates, votes=ranked lists of 5 or less

individuals grouped by preferences

multimodal distribution

clustering problem

parametric, model based: EM algorithm [Busse07]
nonparametric: EBMS Exponential Blurring Mean Shift [MBao08]
nonparametric,model based: DPMM Dirichlet Process Mixtures [MChen10]



Ireland Presidential Election

n = 5, t = 1 : 5 N = 1083
found 12 clusters, sizes 236,...,1

Mary McAleese (Fianna Fail and
Progressive Democrats)

Rosemary Scallon (Independent)

Derek Nally (Independent)

Mary Banotti (Fine Gael)

Adi Roche (Labour)

Work in progress: this clustering different from [Murphy&Gormley]



College program admissions, Ireland

n = 533 programs, N = 53737 candidates, t = 10 options
DC116 DC114 DC111 DC148 DB512 DN021 LM054 WD048 LM020 LM050

WD028

DN008 TR071 DN012 DN052

FT491 FT353 FT471 FT541 FT402 FT404 TR004 FT351 FT110 FT352

Data = all candidates’ rankings for college programs in 2000
from [GormleyMurphy03] (they used EM for Mixture of Plackett-Luce
models)
we [MChen10, Ali Murphy M Chen 10] used DPMM (parameters adjusted to
get approx 20 clusters)



College program rankings: are there clusters?

~θc
33 clusters cover 99% of
the data
~θc parameters large –
cluster are concentrated

number of significant ranks
in σc , θc vary by cluster



College program rankings: are the clusters meaningful?

Cluster Size Description Male (%) Points avg(std)

1 4536 CS & Engineering 77.2 369 (41)
2 4340 Applied Business 48.5 366 (40)
3 4077 Arts & Social Science 13.1 384 (42)
4 3898 Engineering (Ex-Dublin) 85.2 374 (39)
5 3814 Business (Ex-Dublin) 41.8 394 (32)
6 3106 Cork Based 48.9 397 (33)

. . . . . . . . . . . . . . .
33 9 Teaching (Home Economics) 0.0 417 (4)

Cluster differentiate by subject area

... also by geography

... show gender difference in preferences



College program rankings: the “prestige” question

Question: are choices motivated by “prestige”
(i.e high point requirements (PR))?

If yes, then PR should be decreasing along the rankings

PR overall (quantiles) PR for each cluster and rank

Unclustered data: PR decreases monotonically with rankings

Clustered data: PR not always monotonic

Simpson’s paradox!



Summary: Contributions to the GM model

For consensus ranking problem: New BB formulation
theoretical analysis tool:

intuition on problem hardness
admissible heuristics provide bounds on run time

competitive algorithm in practice

For top-t rankings (single θ)
given correct sufficient statistics - all old algorithms can be used on it
BB algorithm (theoretical and practical tool)

For infinite number of items (single or multiple θ)
introduced the Infinite GM model
given sufficient statistics, estimation algorithm
introduced conjugate prior, studied its properties

Bayesian estimation/DPMM clustering (for finite top-t rankings)
efficient (approximate) Gibbs sampler for DPMM

(not mentioned here)
confidence intervals, convergence rates
model selection (BIC for GMM)
EBMS non-parametric clustering
marginal calculation is polynomial



Conclusions

Why GM model?

Recongnized as good/useful in applications

Complementarity:

Utility based ranking models (Thurstone)
Stagewise ranking models (GM) – combinatorial

Nice computational properties/Analyzable statistically

The code grants GM it’s tractability

representation with independent parameters

The bigger picture

Statistical analysis of ranking data combines

combinatorics, algebra
algorithms
statistical theory



Thank you



Extensive comparisons I

New experiment Websearch, all relevant algorithms

Local Search, B&B,other



Extensive comparisons II

Websearch data, all relevant algorithms (detail)

Local Search, B&B,other



Extensive comparisons III

Websearch data, all relevant algorithms (more detail)

Local Search, B&B,other



Extensive comparisons IV

Ranks of B&B algorithms among all other algorithms (cost)



Sufficient statistics spaces I

space of sufficient statistics Q = {Q =
∑n

1=1 Q(πi )} = convex(Sn)

Q = convex1+n(n−1)/2(Sn) by Caratheodory’s Thm

space of means (marginal polytope) of GM model M = {Eπ0,θ[Q] }

characterized algorithmically [M&al07]; [Mallows 57] for Mallows

GM model is curved exponential family

Full exponential family = Bradley-Terry model

not tractable/ loses nice computational/ interpretational properties

GM ⊂ full model [Fligner, Verducci 88] ⊂ Bradley-Terry
open problem: tractable (exact) ML estimation of full model, Bradley-Terry

model ∝ exp
“
−
P

i<j αijQij(π)
”

heuristic [Fligner, Verducci 88] works reasonably well for full model



Consistency and unbiasedness of ML estimates I

Qij/N → P[ item i ≺π0 itemj ] as N → ∞ [FV86]

Therefore

for any π0 fixed, ~θML is consistent [FV86]
the discrete parameter π0

ML consistent when θj non-increasing [FV86, M in
preparation] (joint work with Hoyt Koepke)

is it “unbiased”?

Theorem 1[M,in preparation] For any N finite

E [θML] > θ Bias!

and the order of magnitude of θML − θ is 1√
N

w.h.p.



The Bias of θML

artificial data from Infinite GM

θj estimates for j = 1 : 8 and sample sizes N = 200, 2000



Convergence rates [M, in preparation] I

Theorem 2 For the Mallows (single θ) model, and sample size N sufficiently large

(
√

2ch(θ))−N ≤ P[π0
ML 6= π0] ≤ n(n − 1)

2

(√
2ch(θ)

)−N

Theorem 3 For the GM model, with ~θ > 0 strongly unimodal, ~θ, π0 unknown

P[π0
ML 6= π0] = O

(
e−c(~θ)N

)
confidence interval for θ in the Mallows model from Theorem 2

confidence interval for ~θ? in progress
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