Counting Chemical Reactions and Simplexes in \mathbf{R}^{4}

István Szalkai, szalkai@almos.uni-pannon.hu
Pannon University, Veszprém, Hungary, Dept.Mathematics and Computer Sciences
Chemical reactions as $2 \mathrm{H}_{2}+2 \mathrm{CO}=\mathrm{CH}_{4}+\mathrm{CO}_{2}$ or mechanisms of consequtive reactions can be considered as linear combination of some vectors in \mathbf{R}^{n} resulting $\underline{0}$. When considering minimal reactions, we are not allowed to delete any vector from them so that the remaining vectors still form a reaction / mechanism.

Mathematically speaking: a subset $S \subset \mathbf{R}^{\mathrm{n}}$ is called an (algebraic) simplex iff it is minimal dependent, i.e. S itself is linearly dependent but all proper subsets of S is linearly independent.

Our starting question is the following:
How many simplexes S can be in a given set H of \mathbf{R}^{n} of fixed size $|\mathrm{H}|=m$?
In which cases is the number of simplexes is minimal or maximal?
The number of simplexes, contained in H is denoted by $\operatorname{simp}(\boldsymbol{H})$.
Theorem (1991): If H spans \mathbf{R}^{n} and $|H|=m$ then

$$
n \cdot\binom{m / n}{2} \leq \operatorname{simp}(H) \leq\binom{ m}{n+1}
$$

and we described the minimal and maximal situations as well.
The lower bound occurs when H may contain parallel vectors (isomer molecules).
Next question is: what is the lower bound when H does not contain parallel vectors?
The exact answer is known ony in the case $\boldsymbol{n}=\mathbf{3}$ and (=number of atoms) (1998):

$$
\binom{m-2}{3}+1+\binom{m-3}{2} \leq \operatorname{simp}(H)
$$

and for $\boldsymbol{n}=\mathbf{4}$ (2010):

$$
\binom{\lfloor m / 2\rfloor}{ 3}+1+\binom{[m / 2}{3} \leq \operatorname{simp}(H)
$$

and we have conjectures for higher dimensions.
In the cases $n=3$ és $n=4$ the problem can be formulated in elementary way about points, lines and planes in the Eucledian space R^{2} and in R^{3}. For example
Definition: A set of points $S \subset \mathrm{R}^{3}$ is an affine

- 3 -element simplex iff S is three colinear points,
- 4 -element simplex iff S is any four coplanar points but none three of them are colinear,
- 5 -element simplex iff S is any five points but none four are coplanar (and thus none three of them are colinear).

The general problem about matroids (hypergraphs) was answered in (2006): What is the minimal and maximal number of cycles and bases in a matroid of given rank?

Szalkai: Generating Minimal Reactions in Stoichiometry, HJIC (1991)
Szalkai, Laflamme: Counting Simplexes in \mathbf{R}^{n}, HJIC (1995)
Szalkai: Lineáris algebra, sztöichiometria és kombinatorika, Polygon (1997)
Szalkai, Laflamme: Counting Simplexes in \mathbf{R}^{3}, Electr.J.Comb. (1998)
Szalkai: A New General Algorithmic Method in Reaction Syntheses, J.Math.Chem.(2000)
Szalkai, Dósa, Laflamme: On the Maximal and Minimal Number of Bases and Simple Circuits in Matroids, PUMA (2006)
Szalkai,I.,Szalkai,B.: Counting minimal reactions with specific conditions in R 4, J.Math.Chem. (2000)

