STABILITY OF THE VOLUME-PRODUCT IN THE PLANE

K. J. Böröczky, E. Makai, Jr., M. Meyer, S. Reisner

Let $K \subset \mathbb{R}^{2}$ be an 0 -symmetric convex body, and K^{*} its polar body. Then we have $V(K) \cdot V\left(K^{*}\right) \geq 8$, with equality if and only if K is a parallelogram (V denotes volume). If $K \subset \mathbb{R}^{2}$ is a convex body, with $0 \in \operatorname{int} K$, then $V(K) \cdot V\left(K^{*}\right) \geq 27 / 4$, with equality if and only if K is a triangle and 0 is its centroid. These theorems are due to Mahler and Reisner, and to Mahler and Meyer, respectively. We give stability variants of these theorems. For this we use the Banach-Mazur distance, from parallelograms, or triangles, respectively. The stability variants are sharp, up to constant factors. Our key lemma is a stability estimate for the area product of two sectors of convex bodies polar to each other.

We prove that, for convex n-gons K, the product $V(K) \cdot V\left(\left[(K-s(K)]^{*}\right)\right.$ is maximal exactly for the affine regular n-gons $((s(K)$ is the Santaló point of K, i.e., the unique point $s \in \operatorname{int} K$, such that $V(K) \cdot V\left[(K-s)^{*}\right]$ is minimal). This is a sharpening of the Blaschke-Santaló inequality $V(K) \cdot V\left(\left[(K-s(K)]^{*}\right) \leq \pi^{2}\right.$, for $K \subset \mathbb{R}^{2}$ a convex body. Suppose that, for an 0 -symmetric convex body K in the plane, the ellipse of minimal/maximal area containing/contained by K is the unit circle about 0 . Then a sharpening of the Blaschke-Santaló inequality holds: even the arithmetic mean of the areas of K and $K^{*}=\left[(K-s(K)]^{*}\right.$ is at most π. We give a stability version of the Blaschke-Santaló inequality in the plane, for the 0 -symmetric case, by using as a measure of deviation from the ellipses the quotient of the areas of K, and any of the above two ellipses. This is sharp, up to a factor that is asymptotically 4 . If K contains a regular n-gon inscribed to the unit circle about 0 , and is contained in the polar regular n-gon, then for fixed area $V(K)$ we determine the exact maximum of $V\left(K^{*}\right)$.

