Rational Self Maps of *K*3 Surfaces and Calabi-Yau Manifolds

Xi Chen xic@ualberta.ca

Department of Mathematics and Statistics University of Alberta

Fields Institute Workshop on Arithmetic and Geometry of *K*3 surfaces and Calabi-Yau threefolds, Aug. 16-25, 2011

イロト イポト イヨト イヨト

Outline

ヘロト 人間 とくほとくほとう

∃ 990

Rational Self Maps

Question

Let X be a projective Calabi-Yau (CY) manifold over \mathbb{C} . Does X admit a rational self map $\phi : X \dashrightarrow X$ of degree deg $\phi > 1$?

ヘロト ヘ回ト ヘヨト ヘヨト

Fibrations of Abelian Varieties

Let $\pi : X \dashrightarrow B$ be a dominant rational map, where $X_b = \overline{\pi^{-1}(b)}$ is an abelian variety for $b \in X$ general. There are rational maps $\phi : X \dashrightarrow X$ induced by End(X_b):

- Fixing an ample divisor *L* on *X*, there is a multi-section C ⊂ X/B cut out by general members of |*L*|.
- Let n = deg(C/B). There is a rational map φ : X → X sending a point p ∈ X_b = π⁻¹(b) to C − (n − 1)p. Clearly, deg φ = n².
- We can make *n* arbitrarily large by choosing *L* sufficiently ample.
- The same construction works for X_b birational to a finite quotient of an abelian variety.

Potential Density of Rational Points on K3

- There are rational self maps of arbitrarily high degrees for an elliptic or Kummer *K*3 surface.
- (Bogomolov-Tschinkel, Amerik-Campana) Let X be a K3 surface over a number field k. Suppose that there is a nontrivial rational self map φ : X --→ X over a finite extension k' → k of k. By iterating φ, one can produce many k'-rational points on X. Under suitable conditions, these k'-rational points are Zariski dense in X.
- This works for elliptic and Kummer K3's. For an elliptic K3 surface X/ℙ¹, it suffices to find a suitable multi-section.

くロト (過) (目) (日)

Potential Density of Rational Points on K3

- There are rational self maps of arbitrarily high degrees for an elliptic or Kummer *K*3 surface.
- (Bogomolov-Tschinkel, Amerik-Campana) Let X be a K3 surface over a number field k. Suppose that there is a nontrivial rational self map φ : X --→ X over a finite extension k' → k of k. By iterating φ, one can produce many k'-rational points on X. Under suitable conditions, these k'-rational points are Zariski dense in X.
- This works for elliptic and Kummer K3's. For an elliptic K3 surface X/ℙ¹, it suffices to find a suitable multi-section.

Potential Density of Rational Points on K3

- There are rational self maps of arbitrarily high degrees for an elliptic or Kummer *K*3 surface.
- (Bogomolov-Tschinkel, Amerik-Campana) Let X be a K3 surface over a number field k. Suppose that there is a nontrivial rational self map φ : X --→ X over a finite extension k' → k of k. By iterating φ, one can produce many k'-rational points on X. Under suitable conditions, these k'-rational points are Zariski dense in X.
- This works for elliptic and Kummer K3's. For an elliptic K3 surface X/ℙ¹, it suffices to find a suitable multi-section.

・ロト ・ 同ト ・ ヨト ・ ヨト

Density of Rational Curves on K3

Let φ : X → X be a dominant rational self map of X. Then φ(C) is rational for every rational curve C ⊂ X. For an elliptic K3 surface X/P¹,

$$\bigcup_n \phi^n(C)$$

is dense on X in the analytic topology under suitable conditions.

• Elliptic K3's are dense in the moduli space of K3 surfaces.

Theorem (Chen-Lewis)

On a very general projective K3 surface X,

 $\bigcup_{C \subset X \text{ rational curve}} C$

is dense in the analytic topology.

Bogomolov-Hassett-Tschinkel, Li-Liedtke

Rational curves are Zariski dense on almost "every" K3 surface.

Theorem (Chen-Lewis)

On a very general projective K3 surface X,

 $\bigcup_{C \subset X \text{ rational curve}} C$

is dense in the analytic topology.

Bogomolov-Hassett-Tschinkel, Li-Liedtke

Rational curves are Zariski dense on almost "every" K3 surface.

Conjecture

The union of rational curves is dense in the *analytic* topology on *every K*3 surface.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Complex Hyperbolicity

Question

Does there exist a dominant meromorphic map $f : \mathbb{C}^n \dashrightarrow X$ for a CY manifold X of dimension n?

Cantat

If there is a dominant rational self map $\phi : X \dashrightarrow X$, $\lim_{m\to\infty} \phi^m : \mathbb{C}^n \dashrightarrow X$ is dominant under certain dilating conditions.

Buzzard-Lu

Elliptic and Kummer K3's are holomorphically dominable by \mathbb{C}^2 .

イロト イポト イヨト イヨト 三連

Complex Hyperbolicity

Question

Does there exist a dominant meromorphic map $f : \mathbb{C}^n \dashrightarrow X$ for a CY manifold X of dimension *n*?

Cantat

If there is a dominant rational self map $\phi : X \dashrightarrow X$, $\lim_{m \to \infty} \phi^m : \mathbb{C}^n \dashrightarrow X$ is dominant under certain dilating conditions.

Buzzard-Lu

Elliptic and Kummer K3's are holomorphically dominable by \mathbb{C}^2 .

イロン 不得 とくほ とくほう 一座

Complex Hyperbolicity

Question

Does there exist a dominant meromorphic map $f : \mathbb{C}^n \dashrightarrow X$ for a CY manifold X of dimension *n*?

Cantat

If there is a dominant rational self map $\phi : X \dashrightarrow X$, $\lim_{m \to \infty} \phi^m : \mathbb{C}^n \dashrightarrow X$ is dominant under certain dilating conditions.

Buzzard-Lu

Elliptic and Kummer K3's are holomorphically dominable by \mathbb{C}^2 .

・ロト ・ 同ト ・ ヨト ・ ヨト - 三日

Conjecture

Every K3 surface is holomorphically dominable by \mathbb{C}^2 .

Conjecture

The Kobayashi-Royden infinitesimal metric vanishes everywhere on every *K*3 surface.

$$||\mathbf{v}||_{\mathcal{K}R} = \inf \left\{ \frac{1}{R} : \exists f : \{|z| < R\} \to X \text{ holomorphic and}
ight.$$

 $f(0) = p, f_* \frac{\partial}{\partial z} = \mathbf{v} \right\} \text{ for } \mathbf{v} \in T_{X,p}$

Conjecture

Every K3 surface is holomorphically dominable by \mathbb{C}^2 .

Conjecture

The Kobayashi-Royden infinitesimal metric vanishes everywhere on every *K*3 surface.

$$||\mathbf{v}||_{\mathcal{KR}} = \inf \left\{ \frac{1}{R} : \exists f : \{|z| < R\} \to X \text{ holomorphic and}
ight.$$

 $f(0) = p, f_* \frac{\partial}{\partial z} = \mathbf{v} \right\} \text{ for } \mathbf{v} \in T_{X,p}$

イロン 不得 とくほ とくほ とう

Theorem (Chen-Lewis)

On a very general K3 surface X,

 $||v_p||_{KR} = 0$

for a dense set of points $(p, v_p) \in \mathbb{P}T_X$ in the analytic topology.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Main Theorem

Theorem

A very general projective K3 surface X does not admit rational self maps $\phi : X \dashrightarrow X$ of degree deg $\phi > 1$.

Theorem (Dedieu)

If there is a rational self map $\phi : X \dashrightarrow X$ of deg $(\phi) > 1$ for a generic K3 surface, then the Severi varieties $V_{d,g,X}$ are reducible for d >> g.

イロト イポト イヨト イヨト 三油

Main Theorem

Theorem

A very general projective K3 surface X does not admit rational self maps $\phi : X \dashrightarrow X$ of degree deg $\phi > 1$.

Theorem (Dedieu)

If there is a rational self map $\phi : X \longrightarrow X$ of deg $(\phi) > 1$ for a generic K3 surface, then the Severi varieties $V_{d,g,X}$ are reducible for d >> g.

ヘロト ヘ回ト ヘヨト ヘヨト

Let

$$\begin{aligned} &\operatorname{Aut}(X) = \{\operatorname{Automorphisms of} X\} \\ &\operatorname{Bir}(X) = \{\operatorname{Birational self maps of} X\} \\ &\operatorname{Rat}(X) = \{\operatorname{Dominant rational self maps of} X\}. \end{aligned}$$

• For a very general K3 surface X,

$$\operatorname{Rat}(X) = \operatorname{Bir}(X) = \operatorname{Aut}(X).$$

Generalization

Rational Self Maps of CY Complete Intersections

For a very general complete intersection $X \subset \mathbb{P}^n$ of type $(d_1, d_2, ..., d_r)$ with $d_1 + d_2 + ... + d_r \ge n + 1$ and dim $X \ge 2$,

$$\operatorname{Rat}(X) = \operatorname{Bir}(X) = \operatorname{Aut}(X).$$

Corollary (Voisin?)

A very general CY complete intersection $X \subset \mathbb{P}^n$ of dim $X \ge 2$ is not birational to a fibration of abelian varieties.

Generalization

Rational Self Maps of CY Complete Intersections

For a very general complete intersection $X \subset \mathbb{P}^n$ of type $(d_1, d_2, ..., d_r)$ with $d_1 + d_2 + ... + d_r \ge n + 1$ and dim $X \ge 2$,

$$\operatorname{Rat}(X) = \operatorname{Bir}(X) = \operatorname{Aut}(X).$$

Corollary (Voisin?)

A very general CY complete intersection $X \subset \mathbb{P}^n$ of dim $X \ge 2$ is not birational to a fibration of abelian varieties.

イロト イポト イヨト イヨト 三油

Birational Geometry

Let $X \subset \mathbb{P}^n$ be a very general hypersurface of degree d and dim $X \ge 3$:

• When d > n, X is of CY or general type. Then

 $\operatorname{Rat}(X) = \operatorname{Bir}(X) = \operatorname{Aut}(X).$

 (Iskovskih-Manin, Pukhlikov, ...) When *d* = *n*, −*K_X* is ample and Pic(*X*) = ℤ*K_X*, i.e., *X* is primitive Fano. Then *X* is birationally super rigid and hence

Bir(X) = Aut(X).

• When *d* < *n*, Bir(*X*) =?.

Some Trivial Remarks

• Let $\phi \in \operatorname{Rat}(X)$ and let

be a resolution of ϕ , where $f : Y \to X$ is a projective birational morphism.

• Suppose that $K_X = \mathcal{O}_X$. Then

$$K_Y = f^* K_X + \sum \mu_i E_i = \sum \mu_i E_i = \varphi^* K_X + \sum \mu_i E_i$$

where $\mu_i = a(E_i, X)$ is the discrepancy of E_i w.r.t. X.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

Some Trivial Remarks

• Let $\phi \in \operatorname{Rat}(X)$ and let

be a resolution of ϕ , where $f : Y \to X$ is a projective birational morphism.

• Suppose that $K_X = \mathcal{O}_X$. Then

$$K_{Y} = f^{*}K_{X} + \sum \mu_{i}E_{i} = \sum \mu_{i}E_{i} = \varphi^{*}K_{X} + \sum \mu_{i}E_{i}$$

where $\mu_i = a(E_i, X)$ is the discrepancy of E_i w.r.t. X.

□ > < 注 > < 注 > 注 の < ⊙

- a(E_i, X) + 1 (log discrepancy of E_i) is the ramification index of E_i under φ if φ_{*}E_i ≠ 0.
- If ϕ is regular, ϕ is unramified.
- If $\pi_1(X) = 0$ and ϕ is regular, then $\phi \in Aut(X)$.
- If X is an abelian variety, $\varphi_* E_i = 0$ and hence ϕ is regular.
- If X is a K3 surface and $\phi \in Bir(X)$, $\varphi_*E_i = 0$ and hence Bir(X) = Aut(X).
- $\phi^* H^{1,1}_{alg}(X) = H^{1,1}_{alg}(X)$ and $\phi^* H^{1,1}_{trans}(X) = H^{1,1}_{trans}(X)$.
- (Dedieu) For X a general K3, deg ϕ is a perfect square.

- a(E_i, X) + 1 (log discrepancy of E_i) is the ramification index of E_i under φ if φ_{*}E_i ≠ 0.
- If ϕ is regular, ϕ is unramified.
- If $\pi_1(X) = 0$ and ϕ is regular, then $\phi \in Aut(X)$.
- If X is an abelian variety, $\varphi_* E_i = 0$ and hence ϕ is regular.
- If X is a K3 surface and $\phi \in Bir(X)$, $\varphi_*E_i = 0$ and hence Bir(X) = Aut(X).
- $\phi^* H^{1,1}_{alg}(X) = H^{1,1}_{alg}(X)$ and $\phi^* H^{1,1}_{trans}(X) = H^{1,1}_{trans}(X)$.
- (Dedieu) For X a general K3, deg ϕ is a perfect square.

- a(E_i, X) + 1 (log discrepancy of E_i) is the ramification index of E_i under φ if φ_{*}E_i ≠ 0.
- If ϕ is regular, ϕ is unramified.
- If $\pi_1(X) = 0$ and ϕ is regular, then $\phi \in Aut(X)$.
- If X is an abelian variety, $\varphi_* E_i = 0$ and hence ϕ is regular.
- If X is a K3 surface and $\phi \in Bir(X)$, $\varphi_*E_i = 0$ and hence Bir(X) = Aut(X).
- $\phi^* H^{1,1}_{alg}(X) = H^{1,1}_{alg}(X)$ and $\phi^* H^{1,1}_{trans}(X) = H^{1,1}_{trans}(X)$.
- (Dedieu) For X a general K3, deg ϕ is a perfect square.

- a(E_i, X) + 1 (log discrepancy of E_i) is the ramification index of E_i under φ if φ_{*}E_i ≠ 0.
- If ϕ is regular, ϕ is unramified.
- If $\pi_1(X) = 0$ and ϕ is regular, then $\phi \in Aut(X)$.
- If X is an abelian variety, $\varphi_* E_i = 0$ and hence ϕ is regular.
- If X is a K3 surface and $\phi \in Bir(X)$, $\varphi_*E_i = 0$ and hence Bir(X) = Aut(X).
- $\phi^* H^{1,1}_{alg}(X) = H^{1,1}_{alg}(X)$ and $\phi^* H^{1,1}_{trans}(X) = H^{1,1}_{trans}(X)$.
- (Dedieu) For X a general K3, deg ϕ is a perfect square.

- a(E_i, X) + 1 (log discrepancy of E_i) is the ramification index of E_i under φ if φ_{*}E_i ≠ 0.
- If ϕ is regular, ϕ is unramified.
- If $\pi_1(X) = 0$ and ϕ is regular, then $\phi \in Aut(X)$.
- If X is an abelian variety, $\varphi_* E_i = 0$ and hence ϕ is regular.
- If X is a K3 surface and $\phi \in Bir(X)$, $\varphi_*E_i = 0$ and hence Bir(X) = Aut(X).
- $\phi^* H^{1,1}_{alg}(X) = H^{1,1}_{alg}(X)$ and $\phi^* H^{1,1}_{trans}(X) = H^{1,1}_{trans}(X)$.
- (Dedieu) For X a general K3, deg ϕ is a perfect square.

- a(E_i, X) + 1 (log discrepancy of E_i) is the ramification index of E_i under φ if φ_{*}E_i ≠ 0.
- If ϕ is regular, ϕ is unramified.
- If $\pi_1(X) = 0$ and ϕ is regular, then $\phi \in Aut(X)$.
- If X is an abelian variety, $\varphi_* E_i = 0$ and hence ϕ is regular.
- If X is a K3 surface and $\phi \in Bir(X)$, $\varphi_*E_i = 0$ and hence Bir(X) = Aut(X).
- $\phi^* H^{1,1}_{alg}(X) = H^{1,1}_{alg}(X)$ and $\phi^* H^{1,1}_{trans}(X) = H^{1,1}_{trans}(X)$.
- (Dedieu) For X a general K3, deg ϕ is a perfect square.

- a(E_i, X) + 1 (log discrepancy of E_i) is the ramification index of E_i under φ if φ_{*}E_i ≠ 0.
- If ϕ is regular, ϕ is unramified.
- If $\pi_1(X) = 0$ and ϕ is regular, then $\phi \in Aut(X)$.
- If X is an abelian variety, $\varphi_* E_i = 0$ and hence ϕ is regular.
- If X is a K3 surface and $\phi \in Bir(X)$, $\varphi_*E_i = 0$ and hence Bir(X) = Aut(X).
- $\phi^* H^{1,1}_{alg}(X) = H^{1,1}_{alg}(X)$ and $\phi^* H^{1,1}_{trans}(X) = H^{1,1}_{trans}(X)$.
- (Dedieu) For X a general K3, deg ϕ is a perfect square.

Question

Does there exist a rational self map $\phi : X \dashrightarrow X$ of deg $\phi > 1$ for a K3 surface X which is neither elliptic nor Kummer?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Degeneration

Consider the hypersurfaces in \mathbb{P}^n of degree n + 1 ($n \ge 3$).

- (Kulikov Type II) Let W ⊂ Pⁿ × Δ be a pencil of hypersurfaces of degree n + 1 with W₀ = S₁ ∪ S₂, where deg S₁ = 1 and deg S₂ = n.
- S₁ and S₂ meet transversely along D, where D is a hypersurface in ℙⁿ⁻¹ of degree n.
- *W* has rational double points (xy = tz) along $\Lambda = D \cap W_t$.
- When n = 3, Λ consists of 12 points. Note that $12 = 20 h^{1,1}(S_1) h^{1,1}(S_2)$.
- A is the vanishing locus of the T^1 class of W_0 in $T^1(W_0) = N_{D/S_1} \otimes N_{D/S_2}$.
- We resolve the singularities of *W* by blowing up *W* along S_1 . Let *X* be the resulting *n*-fold and $X_0 = R_1 \cup R_2$. Then R_1 is the blowup of S_1 along \wedge and $R_2 \cong S_2$.

Degeneration

Consider the hypersurfaces in \mathbb{P}^n of degree n + 1 ($n \ge 3$).

- (Kulikov Type II) Let W ⊂ Pⁿ × Δ be a pencil of hypersurfaces of degree n + 1 with W₀ = S₁ ∪ S₂, where deg S₁ = 1 and deg S₂ = n.
- S₁ and S₂ meet transversely along D, where D is a hypersurface in P^{n−1} of degree n.
- *W* has rational double points (xy = tz) along $\Lambda = D \cap W_t$.
- When n = 3, Λ consists of 12 points. Note that $12 = 20 h^{1,1}(S_1) h^{1,1}(S_2)$.
- A is the vanishing locus of the T^1 class of W_0 in $T^1(W_0) = N_{D/S_1} \otimes N_{D/S_2}$.
- We resolve the singularities of *W* by blowing up *W* along S_1 . Let *X* be the resulting *n*-fold and $X_0 = R_1 \cup R_2$. Then R_1 is the blowup of S_1 along \wedge and $R_2 \cong S_2$.

Degeneration

Consider the hypersurfaces in \mathbb{P}^n of degree n + 1 ($n \ge 3$).

- (Kulikov Type II) Let W ⊂ Pⁿ × Δ be a pencil of hypersurfaces of degree n + 1 with W₀ = S₁ ∪ S₂, where deg S₁ = 1 and deg S₂ = n.
- S₁ and S₂ meet transversely along D, where D is a hypersurface in ℙⁿ⁻¹ of degree n.
- *W* has rational double points (xy = tz) along $\Lambda = D \cap W_t$.
- When n = 3, Λ consists of 12 points. Note that $12 = 20 h^{1,1}(S_1) h^{1,1}(S_2)$.
- A is the vanishing locus of the T^1 class of W_0 in $T^1(W_0) = N_{D/S_1} \otimes N_{D/S_2}$.
- We resolve the singularities of *W* by blowing up *W* along S_1 . Let *X* be the resulting *n*-fold and $X_0 = R_1 \cup R_2$. Then R_1 is the blowup of S_1 along \wedge and $R_2 \cong S_2$.

Degeneration

Consider the hypersurfaces in \mathbb{P}^n of degree n + 1 ($n \ge 3$).

- (Kulikov Type II) Let W ⊂ Pⁿ × Δ be a pencil of hypersurfaces of degree n + 1 with W₀ = S₁ ∪ S₂, where deg S₁ = 1 and deg S₂ = n.
- S₁ and S₂ meet transversely along D, where D is a hypersurface in ℙⁿ⁻¹ of degree n.
- *W* has rational double points (xy = tz) along $\Lambda = D \cap W_t$.
- When n = 3, Λ consists of 12 points. Note that $12 = 20 h^{1,1}(S_1) h^{1,1}(S_2)$.
- A is the vanishing locus of the T^1 class of W_0 in $T^1(W_0) = N_{D/S_1} \otimes N_{D/S_2}$.
- We resolve the singularities of *W* by blowing up *W* along S_1 . Let *X* be the resulting *n*-fold and $X_0 = R_1 \cup R_2$. Then R_1 is the blowup of S_1 along \wedge and $R_2 \cong S_2$.

Degeneration

Consider the hypersurfaces in \mathbb{P}^n of degree n + 1 ($n \ge 3$).

- (Kulikov Type II) Let W ⊂ Pⁿ × Δ be a pencil of hypersurfaces of degree n + 1 with W₀ = S₁ ∪ S₂, where deg S₁ = 1 and deg S₂ = n.
- S₁ and S₂ meet transversely along D, where D is a hypersurface in ℙⁿ⁻¹ of degree n.
- *W* has rational double points (xy = tz) along $\Lambda = D \cap W_t$.
- When n = 3, Λ consists of 12 points. Note that $12 = 20 h^{1,1}(S_1) h^{1,1}(S_2)$.
- A is the vanishing locus of the T^1 class of W_0 in $T^1(W_0) = N_{D/S_1} \otimes N_{D/S_2}$.
- We resolve the singularities of *W* by blowing up *W* along S_1 . Let *X* be the resulting *n*-fold and $X_0 = R_1 \cup R_2$. Then R_1 is the blowup of S_1 along \wedge and $R_2 \cong S_2$.

Degeneration

Consider the hypersurfaces in \mathbb{P}^n of degree n + 1 ($n \ge 3$).

- (Kulikov Type II) Let W ⊂ Pⁿ × Δ be a pencil of hypersurfaces of degree n + 1 with W₀ = S₁ ∪ S₂, where deg S₁ = 1 and deg S₂ = n.
- S₁ and S₂ meet transversely along D, where D is a hypersurface in ℙⁿ⁻¹ of degree n.
- *W* has rational double points (xy = tz) along $\Lambda = D \cap W_t$.
- When n = 3, Λ consists of 12 points. Note that $12 = 20 h^{1,1}(S_1) h^{1,1}(S_2)$.
- A is the vanishing locus of the T^1 class of W_0 in $T^1(W_0) = N_{D/S_1} \otimes N_{D/S_2}$.
- We resolve the singularities of *W* by blowing up *W* along S_1 . Let *X* be the resulting *n*-fold and $X_0 = R_1 \cup R_2$. Then R_1 is the blowup of S_1 along Λ and $R_2 \cong S_2$.

We want to show that there are no rational maps

$\phi: X \otimes \overline{\mathbb{C}((t))} \dashrightarrow X \otimes \overline{\mathbb{C}((t))}$

of deg $\phi > 1$.

- Otherwise, we have a rational map φ : X/△ -→ X/△ of deg φ > 1 after a base change of degree m.
- We have the family version of a resolution diagram

of ϕ . Using stable reduction, *Y* can be made very "nice": *Y* is smooth and *Y*₀ has simple normal crossing.

ロンス語とスロンスロントロ

Introduction Our Results Basic Ideas for Proofs

We want to show that there are no rational maps

$\phi: X \otimes \overline{\mathbb{C}((t))} \dashrightarrow X \otimes \overline{\mathbb{C}((t))}$

of deg $\phi > 1$.

- Otherwise, we have a rational map φ : X/Δ → X/Δ of deg φ > 1 after a base change of degree m.
- We have the family version of a resolution diagram

of ϕ . Using stable reduction, *Y* can be made very "nice": *Y* is smooth and *Y*₀ has simple normal crossing.

▶ ▲御▶ ★臣▶ ★臣▶ 「臣」

We want to show that there are no rational maps

$$\phi: X \otimes \overline{\mathbb{C}((t))} \dashrightarrow X \otimes \overline{\mathbb{C}((t))}$$

of deg $\phi > 1$.

- Otherwise, we have a rational map φ : X/Δ → X/Δ of deg φ > 1 after a base change of degree m.
- We have the family version of a resolution diagram

of ϕ . Using stable reduction, *Y* can be made very "nice": *Y* is smooth and *Y*₀ has simple normal crossing.

(画) (目) (目) (目)

Riemann-Hurwitz:

$$K_Y = \varphi^* K_X + \sum a(E_i, X) E_i$$

- Find all components $E \subset Y_0$ with $\varphi_*E \neq 0$: $\varphi_*E \neq 0 \Rightarrow a(E, X) = 0.$
- Let η : X' → X be the "standard" resolution of the singularities xy = t^m of X along D:

• Let $X'_0 = P_0 \cup P_1 \cup ... \cup P_m$ and $Q_k = (f^{-1} \circ \eta)_* P_k$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ◆○ヘ

Riemann-Hurwitz:

$$K_Y = \varphi^* K_X + \sum a(E_i, X) E_i$$

- Find all components $E \subset Y_0$ with $\varphi_*E \neq 0$: $\varphi_*E \neq 0 \Rightarrow a(E, X) = 0.$
- Let η : X' → X be the "standard" resolution of the singularities xy = t^m of X along D:

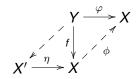
• Let $X'_0 = P_0 \cup P_1 \cup ... \cup P_m$ and $Q_k = (f^{-1} \circ \eta)_* P_k$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ◆○ヘ

Riemann-Hurwitz:

$$K_Y = \varphi^* K_X + \sum a(E_i, X) E_i$$

- Find all components $E \subset Y_0$ with $\varphi_*E \neq 0$: $\varphi_*E \neq 0 \Rightarrow a(E, X) = 0.$
- Let η : X' → X be the "standard" resolution of the singularities xy = t^m of X along D:



• Let $X'_0 = P_0 \cup P_1 \cup ... \cup P_m$ and $Q_k = (f^{-1} \circ \eta)_* P_k$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction Our Results Basic Ideas for Proofs

- $\varphi_* E \neq 0$ and $E \subset Y_0 \Rightarrow E = Q_k$ for some k.
- $\varphi_*(Q_0 + Q_1 + ... + Q_m) = (\deg \phi)(R_0 + R_1).$
- $Q_k \stackrel{\sim}{-} \succ D \times \mathbb{P}^1$ for 0 < k < m.
- deg $\phi = 1$ if and only if $\varphi_* Q_k = 0$ for all 0 < k < m.
- Consider the case n = 4, i.e., $X_t \subset \mathbb{P}^4$ a quintic 3-fold.
- D is a very general quartic K3 surface. Then Rat(D) = Bir(D) = Aut(D) = {1} by induction.
- Suppose that $\varphi : Q_k \to R_1$ is dominant for some 0 < k < m.
- Then there exists $i : C \hookrightarrow D$ such that dim $C \le 1$ and $i_* : CH_0(C) \to CH_0(D)$ is surjective.

イロト イポト イヨト イヨト 一座

- $\varphi_* E \neq 0$ and $E \subset Y_0 \Rightarrow E = Q_k$ for some k.
- $\varphi_*(Q_0 + Q_1 + ... + Q_m) = (\deg \phi)(R_0 + R_1).$
- $Q_k \stackrel{\sim}{-} \succ D \times \mathbb{P}^1$ for 0 < k < m.
- deg $\phi = 1$ if and only if $\varphi_* Q_k = 0$ for all 0 < k < m.
- Consider the case n = 4, i.e., $X_t \subset \mathbb{P}^4$ a quintic 3-fold.
- D is a very general quartic K3 surface. Then Rat(D) = Bir(D) = Aut(D) = {1} by induction.
- Suppose that $\varphi : Q_k \to R_1$ is dominant for some 0 < k < m.
- Then there exists $i : C \hookrightarrow D$ such that dim $C \le 1$ and $i_* : CH_0(C) \to CH_0(D)$ is surjective.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

- $\varphi_* E \neq 0$ and $E \subset Y_0 \Rightarrow E = Q_k$ for some k.
- $\varphi_*(Q_0 + Q_1 + ... + Q_m) = (\deg \phi)(R_0 + R_1).$
- $Q_k \stackrel{\sim}{-} \succ D \times \mathbb{P}^1$ for 0 < k < m.
- deg $\phi = 1$ if and only if $\varphi_* Q_k = 0$ for all 0 < k < m.
- Consider the case n = 4, i.e., $X_t \subset \mathbb{P}^4$ a quintic 3-fold.
- D is a very general quartic K3 surface. Then Rat(D) = Bir(D) = Aut(D) = {1} by induction.
- Suppose that $\varphi : Q_k \to R_1$ is dominant for some 0 < k < m.
- Then there exists $i : C \hookrightarrow D$ such that dim $C \le 1$ and $i_* : CH_0(C) \to CH_0(D)$ is surjective.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

- $\varphi_*E \neq 0$ and $E \subset Y_0 \Rightarrow E = Q_k$ for some k.
- $\varphi_*(Q_0 + Q_1 + ... + Q_m) = (\deg \phi)(R_0 + R_1).$
- $Q_k \stackrel{\sim}{-} \succ D \times \mathbb{P}^1$ for 0 < k < m.
- deg $\phi = 1$ if and only if $\varphi_* Q_k = 0$ for all 0 < k < m.
- Consider the case n = 4, i.e., $X_t \subset \mathbb{P}^4$ a quintic 3-fold.
- D is a very general quartic K3 surface. Then Rat(D) = Bir(D) = Aut(D) = {1} by induction.
- Suppose that $\varphi : Q_k \to R_1$ is dominant for some 0 < k < m.
- Then there exists $i : C \hookrightarrow D$ such that dim $C \le 1$ and $i_* : CH_0(C) \to CH_0(D)$ is surjective.

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ◆○ヘ

Theorem (Mumford, Roitman, Bloch-Srinivas)

Let X be a smooth projective variety of dimension n. If there exists $i: Y \hookrightarrow X$ such that dim Y < n and

 $i_*: \operatorname{CH}_0(Y) \to \operatorname{CH}_0(X)$

is surjective, then $h^{n,0}(X) = 0$.

Conclusion

deg $\phi = 1 \Rightarrow \operatorname{Rat}(X) = \operatorname{Bir}(X)$ for a very general quintic 3-fold $X \subset \mathbb{P}^4$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Theorem (Mumford, Roitman, Bloch-Srinivas)

Let X be a smooth projective variety of dimension n. If there exists $i: Y \hookrightarrow X$ such that dim Y < n and

 $i_*: \operatorname{CH}_0(Y) \to \operatorname{CH}_0(X)$

is surjective, then $h^{n,0}(X) = 0$.

Conclusion

deg $\phi = 1 \Rightarrow \operatorname{Rat}(X) = \operatorname{Bir}(X)$ for a very general quintic 3-fold $X \subset \mathbb{P}^4$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

References I

Self rational maps of *K*3 surfaces, preprint arXiv:math/1008.1619.

X. Chen and J. D. Lewis, Density of rational curves on K3 surfaces, preprint arXiv:math/1004.5167.