On the value of Borcherds Φ -function

Ken-Ichi Yoshikawa

Kyoto University

August 19, 2011

- 1 Introduction A trinity of Dedekind η -function
 - 2 Borcherds Φ -function
- 3 Enriques surface and its analytic torsion: an analytic counter part
- (4) Resultants and Borcherds Φ -function: an algebraic counter part
- 5 Examples related to theta functions

Let $\mathfrak{H} = \{x + iy \in \mathbb{C}; y > 0\}$ be the complex upper half-plane.

Definition (Dedekind η -function)

Dedekind η -function is the holomorphic function on \mathfrak{H} defined as

$$\eta(au) := q^{rac{1}{24}} \prod_{n>0} (1-q^n), \qquad q := e^{2\pi i au}.$$

Fact

$$\begin{split} &\eta(\tau)^{24} \text{ is a modular form for } SL_2(\mathbb{Z}) \text{ of weight } 12 \text{ vanishing at } +i\infty, \text{ i.e.,} \\ &\bullet \eta(\frac{a\tau+b}{c\tau+d})^{24} = (c\tau+d)^{12}\eta(\tau)^{24} \text{ for all } \binom{a\,b}{c\,d} \in SL_2(\mathbb{Z}). \\ &\bullet \lim_{\Im \tau \to +\infty} \eta(\tau) = 0. \end{split}$$

These properties characterize the Dedekind η -function up to a constant.

・ロト ・同ト ・ヨト ・ヨト

Determinant of Laplacian: an analytic counter part

For $\tau \in \mathfrak{H}$, let E_{τ} be the elliptic curve

$$E_{\tau} := \mathbb{C}/\mathbb{Z} + \tau\mathbb{Z},$$

which is equipped with the flat Kähler metric of normalized volume 1

$$g_{ au} = dz \otimes dar{z} / \Im au.$$

The Laplacian of (E_{τ}, g_{τ}) is the differential operator defined as

$$\Box_{\tau} := -\Im\tau \, \frac{\partial^2}{\partial z \partial \bar{z}} = -\frac{\Im\tau}{4} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right).$$

Definition (Zeta Function of \Box_{τ})

$$\zeta_{\tau}(\boldsymbol{s}) := \sum_{\lambda \in \sigma(\Box_{\tau}) \setminus \{0\}} \lambda^{-\boldsymbol{s}} = \sum_{(\boldsymbol{m}, \boldsymbol{n}) \neq (0, 0)} \left(\frac{\pi^2 \, |\boldsymbol{m}\tau + \boldsymbol{n}|^2}{\Im \tau} \right)^{-\boldsymbol{s}}$$

Ken-Ichi Yoshikawa (Kyoto University)

On the value of Borcherds Φ -function

Fact (classical)

 $\zeta_{\tau}(s)$ converges absolutely when $\Re s > 1$ and extends to a meromorphic function on \mathbb{C} . Moreover, $\zeta_{\tau}(s)$ is holomorphic at s = 0.

By the identity for finite dimensional non-degenerate, Hermitian matrices

$$\log \det H = - \left. \frac{d}{ds} \right|_{s=0} \operatorname{Tr} H^{-s} = -\zeta'_{H}(0),$$

the value $\exp(-\zeta'_{\tau}(0))$ is called the (regularized) determinant of \Box_{τ} .

Theorem (Kronecker's limit formula)

The Petersson norm of the Dedekind η -function is the determinant of \Box_{τ}

$$\exp(-\zeta_{\tau}'(0)) = 4\Im au \left| e^{2\pi i au} \prod_{n>0} (1 - e^{2\pi i n au})^{24}
ight|^{1/2}$$

= $4 \|\eta(au)\|^4.$

6

Discriminant of elliptic curve: an algebraic counter part

Recall that every elliptic curve is expressed as the complete intersection

$$E = E_A := \left\{ \begin{bmatrix} x \end{bmatrix} \in \mathbb{P}^3; \begin{array}{l} f_1(x) = a_{11}x_1^2 + a_{12}x_2^2 + a_{13}x_3^2 + a_{14}x_4^2 &= 0\\ f_2(x) = a_{21}x_1^2 + a_{22}x_2^2 + a_{23}x_3^2 + a_{24}x_4^2 &= 0 \end{array} \right\}$$

where $A = (a_{ij}) = (\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_4) \in M_{2,4}(\mathbb{C})$. We define
 $\Delta_{ij}(A) := \det(\mathbf{a}_i, \mathbf{a}_j), \qquad i < j.$

Theorem (classical result due essentially to Jacobi?)

$$2^8 \|\eta(E_A)\|^{24} = \prod_{1 \leq i < j \leq 4} |\Delta_{ij}(A)|^2 \cdot \left(\frac{2\sqrt{-1}}{\pi^2} \int_{E_A} \alpha_A \wedge \bar{\alpha}_A\right)^6$$

Here $\alpha_A \in H^0(E_A, \Omega^1)$ is defined as the residue of f_1, f_2 , i.e., $\alpha_A := \Xi|_{E_A}$,

$$df_1 \wedge df_2 \wedge \Xi = \sum_{i=1}^4 (-1)^{i-1} x_i dx_1 \wedge dx_{i-1} \wedge dx_{i+1} \wedge dx_4$$

Remark: another elliptic curve associated to $A \in M_{2,4}(\mathbb{C})$

For $A = (a_{ij}) \in M_{2,4}(\mathbb{C})$, one can associate another elliptic curve:

 $C_A := \{(x, y) \in \mathbb{C}^2; \ y^2 = 4(a_{11}x + a_{21})(a_{12}x + a_{22})(a_{13}x + a_{23})(a_{14}x + a_{24})\}$

Then $C_A \cong E_A$ and

$$2^8 \|\eta(\mathcal{C}_A)\|^{24} = \prod_{1 \leq i < j \leq 4} |\Delta_{ij}(A)|^2 \cdot \left(\frac{\sqrt{-1}}{2\pi^2} \int_{\mathcal{C}_A} \frac{dx}{y} \wedge \overline{\frac{dx}{y}}\right)^6$$

Goal of talk

We generalize the trinity of Dedekind η -function to Borcherds Φ -function by making the following replacements:

- elliptic curve \longrightarrow Enriques surface
- \bullet determinant of Laplacain \longrightarrow analytic torsion
- \bullet discriminant \longrightarrow resultant of a certain system of polynomials

The Borcherds Φ -function

As a by-product of his construction of the fake monster Lie (super)algebra, Borcherds introduced a nice automorphic form on the moduli space of Enriques surfaces.

To explain Borcherds Φ -function, we fix some notation.

$$\mathbb{L} = \begin{pmatrix} 0 \ 1 \\ 1 \ 0 \end{pmatrix} \oplus \mathbb{E}_8(-1)$$

be an even unimodular Lorentzian lattice of rank 10 with signature (1,9), where $\mathbb{E}_8(-1)$ is the negative-definite E_8 -lattice.

Let

$$\mathcal{C}_{\mathbb{L}} = \mathcal{C}_{\mathbb{L}}^+ \amalg - \mathcal{C}_{\mathbb{L}}^+ := \{ x \in \mathbb{L} \otimes \mathbb{R}; \ x^2 > 0 \}$$

be the positive cone of \mathbb{L} .

 $\bullet\,$ We consider the tube domain of $\mathbb{L}\otimes\mathbb{C}$

 $\mathbb{L}\otimes\mathbb{R}+\mathit{i}\,\mathcal{C}^+_{\mathbb{L}}\cong~$ symmetric bounded domain of type IV of dim 10

Definition (Borcherds '96, '98: Borcherds Φ -function of rank 10)

The Borcherds Φ -function is the formal Fourier series on $\mathbb{L} \otimes \mathbb{R} + i \mathcal{C}^+_{\mathbb{L}}$

$$\prod_{\lambda \in \mathbb{L}, \, \langle \lambda, \mathcal{W} \rangle > 0} \left(\frac{1 - e^{2\pi i \langle \lambda, z \rangle}}{1 + e^{2\pi i \langle \lambda, z \rangle}} \right)^{c(\lambda^2/2)} = \sum_{\lambda \in \mathbb{L} \cap \overline{\mathcal{C}_{\mathbb{L}}^+}, \, \lambda^2 = 0, \, \text{primitive}} \frac{\eta(\langle \lambda, z \rangle)^{16}}{\eta(2\langle \lambda, z \rangle)^8}$$

where \mathcal{W} is a Weyl chamber of \mathbb{L} and $\{c(n)\}$ is defined by the series

$$\sum_{n\in\mathbb{Z}}c(n)\,q^n:=\eta(\tau)^{16}\eta(2\tau)^{-8}.$$

Theorem (Borcherds '96)

The Borcherds Φ -function converges absolutely when $\Im z \gg 0$ and extends to an automorphic form on $\mathbb{L} \otimes \mathbb{R} + i \mathcal{C}^+_{\mathbb{L}}$ for an arithmetic subgroup of $\Gamma \subset \operatorname{Aut}(\mathbb{L} \otimes \mathbb{R} + i \mathcal{C}^+_{\mathbb{L}})_0 \cong SO(2, 10; \mathbb{R})_0$ of weight 4.

Definition (K3 surface)

A compact connected complex surface X is a K3 surface \iff

•
$$H^1(X, \mathcal{O}_X) = 0$$
 • $K_X = \Omega_X^2 \cong \mathcal{O}_X.$

Definition (Enriques surface)

A compact connected complex surface Y is an Enriques surface \iff • $H^1(Y, \mathcal{O}_Y) = 0$, • $K_Y \ncong \mathcal{O}_Y$, • $K_Y^{\otimes 2} \cong \mathcal{O}_Y$.

Fact

An Enriques surface is the quotient of a K3 surface by a free involution.

N.B. A K3 surface can cover many distinct Enriques surfaces.

イロト イポト イヨト イヨト 二日

Theorem (Horikawa '78)

Recall that $\Gamma \subset \operatorname{Aut}(\mathbb{L} \otimes \mathbb{R} + i \mathcal{C}^+_{\mathbb{L}})_0 \cong SO(2, 10; \mathbb{R})_0$ is the arithmetic subgroup, for which Φ is an automorphic form. Then there is a divisor $\mathcal{D} \subset \mathbb{L} \otimes \mathbb{R} + i \mathcal{C}^+_{\mathbb{L}}$ such that the period mapping induces an isomorphism

Moduli space of Enriques surfaces
$$\cong \frac{(\mathbb{L} \otimes \mathbb{R} + i \mathcal{C}_{\mathbb{L}}^+) - \mathcal{D}}{\Gamma}$$

Theorem (Borcherds '96)

The Borcherds Φ -function vanishes exactly on \mathcal{D} of order 1.

Definition (Petersson norm)

The Petersson norm of Φ is the C^{∞} function on the moduli of Enriques surfaces

$$|\Phi(z)||^2 := \langle \Im z, \Im z \rangle^4 |\Phi(z)|^2.$$

Ken-Ichi Yoshikawa (Kyoto University)

Definition (Ray-Singer '73)

Let (M, h_M) be a compact connected Kähler manifold. Let $\Box_q = (\bar{\partial} + \bar{\partial}^*)^2$ be the Laplacian acting on (0, q)-forms on M. Let $\zeta_q(s)$ be the zeta function of \Box_q :

$$\zeta_q(s) := \sum_{\lambda \in \sigma(\Box_q) \setminus \{0\}} \lambda^{-s} \dim E(\lambda, \Box_q),$$

where $E(\lambda, \Box_q)$ is the eigenspace of \Box_q with respect to the eigenvalue λ . The analytic torsion of (M, h_M) is the real number

$$\tau(M) := \exp[-\sum_{q \ge 0} (-1)^q q \, \zeta_q'(0)].$$

When dim M = 1, $\tau(M)$ is essentially the determinant of Laplacian that appeared in the formula for $\|\eta(\tau)\|$.

$\varPhi\mbox{-}function$ as the analytic torsion of Enriques surface

Recall that the Petersson norm of the Dedekind η -function at $z \in \mathfrak{H}$ coincides with the analytic torsion of the flat elliptic curve E_z with normalized volume 1, up to a constant (Kronecker's limit formula)

$$\tau(E_z) = \|\eta(z)\|^{-4}/4.$$

Theorem (Y. '04)

- For an Enriques surface Y, its analytic torsion $\tau(Y)$ with respect to a Ricci-flat Kähler metric of normalized volume 1, is independent of the choice of such a Kähler metric. Namely, $\tau(Y)$ is an invariant of Y.
- There is a constant C ≠ 0 such that for every Enriques surface Y equipped with a Ricci-flat Kähler metric of normalized volume 1,

$$\tau(Y) = C \| \Phi(Y) \|^{-1/4}.$$

N.B. In fact, $C = 2^a \pi$ with some $a \in \mathbb{Q}$.

Generic Enriques surfaces

Let $f_1(x), g_1(x), h_1(x) \in \mathbb{C}[x_1, x_2, x_3]$ and $f_2(x), g_2(x), h_2(x) \in \mathbb{C}[x_4, x_5, x_6]$ be homogeneous polynomials of degree 2. We define $f, g, h \in \mathbb{C}[x_1, \dots, x_6]$

$$f := f_1 + f_2,$$
 $g = g_1 + g_2,$ $h = h_1 + h_2.$

For generic quadrics f_1 , g_1 , h_1 , f_2 , g_2 , h_2 , we get a K3 surface in \mathbb{P}^5

$$X_{(f,g,h)} := \{ [x] \in \mathbb{P}^5; f(x) = g(x) = h(x) = 0 \},\$$

which is preserved by the involution

$$\iota(x_1:x_2:x_3:x_4:x_5:x_6) = (x_1:x_2:x_3:-x_4:-x_5:-x_6).$$

Then ι has no fixed points on $X_{(f,g,h)}$ for generic f, g, h.

Fact

A generic Enriques surface is expressed as the quotient

$$Y_{(f,g,h)} := X_{(f,g,h)}/\iota$$

Theorem (Kawaguchi-Mukai-Y. '11)

For all generic Enriques surface $Y_{(f,g,h)}$ defined by the quadric polynomials $f = f_1 + f_2$, $g = g_1 + g_2$, $h = h_1 + h_2 \in \mathbb{C}[x_1, \dots, x_6]$, one has

$$\|\Phi(Y_{(f,g,h)})\|^{2} = |R(f_{1},g_{1},h_{1})R(f_{2},g_{2},h_{2})| \left(\frac{2}{\pi^{4}}\int_{X_{(f,g,h)}} \alpha \wedge \overline{\alpha}\right)^{4}$$

Here $R(f_1, g_1, h_1)$ and $R(f_2, g_2, h_2)$ are the resultants of the three quadric polynomials of three variables, and $\alpha \in H^0(X_{(f,g,h)}, \Omega^2)$ is defined as the residue of f, g, h:

$$\alpha := \Xi|_{X_{(f,g,h)}},$$

$$\sum_{i=1}^{6} (-1)^{i} x_{i} dx_{1} \wedge \cdots \wedge dx_{i-1} \wedge dx_{i+1} \wedge \cdots \wedge dx_{6} = df \wedge dg \wedge dh \wedge \Xi.$$

A Thomae type formula for the Borcherds Φ -function

Corollary

Let $\mathbf{v}, \mathbf{v}' \in H^2(X_{(f,g,h)}, \mathbb{Z})$ be anti- ι -invariant, primitive, isotropic vectors with $\langle \mathbf{v}, \mathbf{v}' \rangle = 1$ and let $\mathbf{v}^{\vee} \in H_2(X_{(f,g,h)}, \mathbb{Z})$ be the Poincaré dual of \mathbf{v} . Under the identification of lattices $(\mathbb{Z}\mathbf{v} + \mathbb{Z}\mathbf{v}')^{\perp} \cong {0 \choose 2} \oplus \mathbb{E}_8(-2) =: L$,

$$z_{(f,g,h),\mathbf{v},\mathbf{v}'} := \frac{\alpha - \langle \alpha, \mathbf{v}' \rangle \mathbf{v} - \langle \alpha, \mathbf{v} \rangle \mathbf{v}'}{\langle \alpha, \mathbf{v} \rangle} \in L \otimes \mathbb{R} + i \, \mathcal{C}_L^+$$

is regarded as the period of $Y_{(f,g,h)}$. Then, by a suitable choice of cocycles $\{\mathbf{v},\mathbf{v}'\}$, one has

$$\Phi\left(z_{(f,g,h),\mathbf{v},\mathbf{v}'}\right)^2 = R(f_1,g_1,h_1)R(f_2,g_2,h_2)\left(\frac{2}{\pi^2}\int_{\mathbf{v}^{\vee}}\alpha\right)^8,$$

where α is the residue of $f, g, h \in \mathbb{C}[x_1, \dots, x_6]$ as before.

< 回 ト < 三 ト < 三 ト

For a 3×6 -complex matrix $A \in M_{3,6}(\mathbb{C})$, we define

$$X_{A} := \left\{ \begin{bmatrix} a_{11}x_{1}^{2} + a_{12}x_{2}^{2} + a_{13}x_{3}^{2} + a_{14}x_{4}^{2} + a_{15}x_{5}^{2} + a_{16}x_{6}^{2} &= 0\\ a_{21}x_{1}^{2} + a_{22}x_{2}^{2} + a_{23}x_{3}^{2} + a_{24}x_{4}^{2} + a_{25}x_{5}^{2} + a_{26}x_{6}^{2} &= 0\\ a_{31}x_{1}^{2} + a_{32}x_{2}^{2} + a_{33}x_{3}^{2} + a_{34}x_{4}^{2} + a_{35}x_{5}^{2} + a_{36}x_{6}^{2} &= 0 \end{array} \right\}$$

on which acts the involution

$$\iota: \mathbb{P}^5 \ni (x_1: x_2: x_3: x_4: x_5: x_6) \to (x_1: x_2: x_3: -x_4: -x_5: -x_6) \in \mathbb{P}^5.$$

For $A = (\mathbf{a}_1, \dots, \mathbf{a}_6) \in M(3, 6; \mathbb{C})$ and i < j < k, set

$$\Delta_{ijk}(A) = \det(\mathbf{a}_i, \mathbf{a}_j, \mathbf{a}_k).$$

 $A \in M(3,6;\mathbb{C})$ is said to be generic if $\prod_{i < j < k} \Delta_{ijk}(A) \neq 0$.

Fact

For a generic $A \in M_{3,6}(\mathbb{C})$, X_A is a K3 surface and ι is a free involution. Hence

$$Y_A := X_A / \iota$$

is an Enriques surface.

Corollary

For every generic $A \in M_{3,6}(\mathbb{C})$,

$$\|\Phi(Y_A)\|^2 = |\Delta_{123}(A)|^4 |\Delta_{456}(A)|^4 \left(\frac{2}{\pi^4}\int_{X_A} \alpha_A \wedge \overline{\alpha}_A\right)^4.$$

As before, $\alpha_A \in H^0(X_A, \Omega^2)$ is defined as $\alpha_A := \Xi|_{X_A}$, where

$$\sum_{i=1}^{6} (-1)^{i-1} x_i dx_1 \wedge \cdots \wedge dx_{i-1} \wedge dx_{i+1} \wedge \cdots \wedge dx_6 = (\prod_{i=1}^{3} \sum_{j=1}^{6} a_{ij} x_j dx_j) \wedge \Xi$$

Corollary

Let $A \in M_{3,6}(\mathbb{C})$ be generic. For a partition

$$\{i,j,k\} \cup \{l,m,n\} = \{1,2,3,4,5,6\},\$$

define an involution $\iota_{\binom{ijk}{lmn}}$ on \mathbb{P}^5 by

$$\iota_{\binom{jjk}{lmn}}(x_i, x_j, x_k, x_l, x_m, x_n) = (x_i, x_j, x_k, -x_l, -x_m, -x_n).$$

Then $\iota_{\binom{ijk}{lmn}}$ is a free involution on X_A called a switch. Moreover,

$$\|\Phi(X_A/\iota_{\binom{ijk}{lmn}})\|^2 = |\Delta_{ijk}(A)|^4 |\Delta_{lmn}(A)|^4 \left(\frac{2}{\pi^4} \int_{X_A} \alpha_A \wedge \overline{\alpha}_A\right)^4$$

In particular, if $A \in M_{3,6}(K)$ with $K \subset \mathbb{C}$, then

$$\frac{\|\Phi(X_A/\iota_{\binom{ijk}{lmn}})\|^2}{\|\Phi(X_A/\iota_{\binom{i'j'k'}{l'm'n'}})\|^2} = \frac{|\Delta_{ijk}(A)|^4 |\Delta_{lmn}(A)|^4}{|\Delta_{i'j'k'}(A)|^4 |\Delta_{l'm'n'}(A)|^4} \in K.$$

Ken-Ichi Yoshikawa (Kyoto University)

Another K3 surface associated to $A \in M_{3,6}(\mathbb{C})$

To a generic $A \in M_{3,6}(\mathbb{C})$, one can associate another K3 surface

$$Z_{\mathcal{A}} := \{((x_1 : x_2 : x_3), y) \in \mathcal{O}_{\mathbb{P}^2}(3); \ y^2 = \prod_{i=1}^6 (a_{1i}x_1 + a_{2i}x_2 + a_{3i}x_3)\}$$

which is identified with its minimal resolution. We define a holomorphic 2-form η_A on Z_A by

$$\eta_A := \frac{x_1 dx_2 \wedge dx_3 - x_2 dx_1 \wedge dx_3 + x_3 dx_1 \wedge dx_2}{y}$$

Fact (Matsumoto-Sasaki-Yoshida)

There are 6 independent transcendental 2-cycles $\{\gamma_{ij}\}_{1 \le i < j \le 4}$ on Z_A and 16 independent algebraic 2-cycles on Z_A , which form a basis of $H_2(Z_A, \mathbb{Z})$.

Fact (Matsumoto-Sasaki-Yoshida)

Define the period of Z_A as the matrix

$$\Omega_{\mathcal{A}} := \frac{1}{\eta_{34}(\mathcal{A})} \begin{pmatrix} \eta_{14}(\mathcal{A}) & -\frac{\eta_{13}(\mathcal{A}) - \sqrt{-1}\eta_{24}(\mathcal{A})}{1 + \sqrt{-1}} \\ -\frac{\eta_{13}(\mathcal{A}) + \sqrt{-1}\eta_{24}(\mathcal{A})}{1 - \sqrt{-1}} & -\eta_{23}(\mathcal{A}) \end{pmatrix}, \ \eta_{ij}(\mathcal{A}) = \int_{\gamma_{ij}} \eta_{\mathcal{A}}(\mathcal{A}) = \int_{\gamma_{ij}} \eta_{$$

By a suitable choice of the basis $\{\gamma_{ij}\}_{1\leq i< j\leq 4}$ of $H_2(Z_A,\mathbb{Z})$, one has

 $\Omega_A \in \mathbb{D} := \{ T \in M_{2,2}(\mathbb{C}); \ (T - {}^t\overline{T})/2i > 0 \} \cong SBD \text{ of type IV of dim 4.}$

Definition (Freitag theta function)

Write $\mathbf{e}(x) := \exp(2\pi i x)$. For $\Omega \in \mathbb{D}$ and $\mathbf{a} = (a_1, a_2), \mathbf{b} = (b_1, b_2) \in \mathbb{Z}[i]^2$,

$$\Theta_{\frac{a}{1+i},\frac{b}{1+i}}(\Omega) := \sum_{n \in \mathbb{Z}[i]^2} \mathbf{e} \left[\frac{1}{2} \left(n + \frac{a}{1+i} \right) \Omega^t \overline{\left(n + \frac{a}{1+i} \right)} + \Re \left(n + \frac{a}{1+i} \right) t \overline{\left(\frac{b}{1+i} \right)} \right]$$

Theorem (Kawaguchi-Mukai-Y. '11)

For a generic $A = (A_1, A_2) \in M_{3,6}(\mathbb{C})$ with $A_1, A_2 \in M_{3,3}(\mathbb{C})$, define

$$A^{\vee} := ({}^{t}A_{1}^{-1}, {}^{t}A_{2}^{-1}).$$

Then

$$\begin{split} \left\| \Phi(X_{A}/\iota_{\binom{ijk}{imn}}) \right\| &= \det\left(\frac{\Omega_{A} - {}^{t}\overline{\Omega_{A}}}{2\sqrt{-1}}\right)^{2} \left| \Theta_{\binom{ijk}{imn}}(\Omega_{A^{\vee}}) \right|^{4} =: \left\| \Theta_{\binom{ijk}{imn}}(Z_{A^{\vee}}) \right\|^{4} \\ \text{under the identification } \Theta_{\binom{pqr}{stu}}(\Omega) &:= \Theta_{\frac{a}{1+i},\frac{b}{1+i}}(\Omega), \ \binom{a}{b} = \binom{a_{1}}{b_{1}} \binom{a_{2}}{b_{1}} \leftrightarrow \binom{pqr}{stu}, \\ \begin{pmatrix} i \\ 0 \\ 0 \end{pmatrix} & \binom{i \\ 0 \\ 0 \end{pmatrix} & \binom{i \\ 1 \end{pmatrix} & \binom{i \\ 0 \end{pmatrix} & \binom{i \\ 1 \end{pmatrix} & \binom{i \\ 0 \end{pmatrix}$$

< 🗇 🕨

3

The case of Jacobian Kummer surfaces

For $\lambda = (\lambda_1, \dots, \lambda_6)$ with $\lambda_i \neq \lambda_j$ $(i \neq j)$, define a genus 2 curve

$$\mathcal{C}_{\lambda} := \{(x,y) \in \mathbb{C}^2; y^2 = \prod_{i=1}^6 (x - \lambda_i)\}.$$

Define holomorphic differentials $\omega_1 := dx/y$, $\omega_2 := xdx/y$ on C_{λ} . Let $\{A_1, A_2, B_1, B_2\}$ be a certain symplectic basis of $H_1(C_{\lambda}, \mathbb{Z})$ and set

$$T_{\lambda} := \begin{pmatrix} \int_{B_1} \omega_1 & \int_{B_2} \omega_1 \\ \int_{B_1} \omega_2 & \int_{B_2} \omega_2 \end{pmatrix}^{-1} \begin{pmatrix} \int_{A_1} \omega_1 & \int_{A_2} \omega_1 \\ \int_{A_1} \omega_2 & \int_{A_2} \omega_2 \end{pmatrix} \in \mathfrak{S}_2.$$

Fact (classical)

The Kummer surface $K(C_{\lambda})$ of $Jac(C_{\lambda})$ is expressed as follows:

$$\mathcal{K}(\mathcal{C}_{\lambda}) \cong \mathcal{X}_{\mathcal{A}}, \qquad \mathcal{A} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ \lambda_1 & \lambda_2 & \lambda_3 & \lambda_4 & \lambda_5 & \lambda_6 \\ \lambda_1^2 & \lambda_2^2 & \lambda_3^2 & \lambda_4^2 & \lambda_5^2 & \lambda_6^2 \end{pmatrix} \in \mathcal{M}_{3,6}(\mathbb{C}).$$

Fact (classical)

 $A \in M_{3,6}(\mathbb{C})$ is associated to a Jacobian Kummer surface, i.e., $K(C_{\lambda}) = X_A$ if and only if A is self-dual in the sense that

 $X_A \cong X_{A^{\vee}}.$

By this fact and the previous theorem, we get the following.

Theorem (Kawaguchi-Mukai-Y. '11)

If the partition $\binom{pqr}{stu}$ corresponds to the even characteristic (a, b), then

$$\left\| \varPhi(\mathsf{K}(\mathsf{C}_{\lambda})/\iota_{\binom{pqr}{stu}}) \right\| = (\det \Im \mathsf{T}_{\lambda})^2 \left| \theta_{\Re(\frac{a}{1+i}), \Re(\frac{b}{1+i})}(\mathsf{T}_{\lambda}) \theta_{\Im(\frac{a}{1+i}), \Im(\frac{b}{1+i})}(\mathsf{T}_{\lambda}) \right|^4$$

Here $\theta_{\alpha,\beta}(T)$, $(\alpha,\beta) = (\alpha_1, \alpha_2, \beta_1, \beta_2)$, is the Riemann theta constant

$$\theta_{\alpha,\beta}(T) := \sum_{n \in \mathbb{Z}^2} \mathbf{e} \left[\frac{1}{2} (n+\alpha) T^t \overline{(n+\alpha)} + (n+\alpha)^t \overline{\beta} \right], \qquad T \in \mathfrak{S}_2.$$

3

Recall that Igusa's Siegel modular form Δ_5 is defined as the product of all even theta constants

$$\Delta_5(T) := \prod_{(lpha,eta) \, ext{even}} heta_{lpha,eta}(T), \qquad T \in \mathfrak{S}_2.$$

For a genus 2 curve C with period $T \in \mathfrak{S}_2$, its Petersson norm

$$\|\Delta_5(\mathcal{C})\|^2 := (\det \Im \mathcal{T})^5 |\Delta_5(\mathcal{T})|^2$$

is independent of the choice of a symplectic basis of $H_1(C, \mathbb{Z})$. Hence $\|\Delta_5(C)\|$ is an invariant of C.

Corollary

 Δ_5 is the average of Φ by the 10 switches:

$$\prod_{\substack{(jk\\lmn)}} \left\| \Phi(K(C_{\lambda}))/\iota_{\binom{jk}{lmn}} \right\| = \|\Delta_5(C_{\lambda})\|^8.$$

Fact (Gritsenko-Nikulin '97)

The Igusa cusp form $\Delta_5(T)$ admits an infinite product expansion near the cusp of \mathfrak{S}_2 .

After our corollaries, the following statements are very likely to be the case.

Infinite product expansion of theta function in higher dimension ?

- For all partitions $\binom{ijk}{lmn}$, the Freitag theta function $\Theta_{\binom{ijk}{lmn}}(\Omega)$ admits an infinite product expansion near the cusp of \mathbb{D} .
- For even characteristic $(a, b) \in \mathbb{Z}[i]^2$, the product of the Riemann theta constants of degree 2

$$\theta_{\Re(\frac{a}{1+i}),\Re(\frac{b}{1+i})}(T)\theta_{\Im(\frac{a}{1+i}),\Im(\frac{b}{1+i})}(T)$$

admits an infinite product expansion near the cusp of \mathfrak{S}_2 .

Problem (The inverse of the period mapping for Enriques surfaces) For $1 \le i < j \le 3$ and $4 \le k < l \le 6$, find a system of automorphic forms $\alpha_{ij}^{(1)}(z), \, \alpha_{kl}^{(2)}(z), \, \beta_{ij}^{(1)}(z), \, \beta_{kl}^{(2)}(z), \, \gamma_{ij}^{(1)}(z), \, \gamma_{kl}^{(2)}(z)$

on $\mathbb{L}\otimes\mathbb{R}+i\mathcal{C}^+_{\mathbb{L}}$ for (a finite index subgroup of) Γ such that

$$Y_z := X_z/\iota, \qquad \iota(x) = (x_1, x_2, x_3, -x_4, -x_5, -x_6)$$

with

$$X_{z} = \left\{ \begin{bmatrix} x \end{bmatrix} \in \mathbb{P}^{5}; \quad \sum_{1 \le i < j \le 3} \alpha_{ij}^{(1)}(z) x_{i} x_{j} + \sum_{4 \le k < l \le 6} \alpha_{kl}^{(2)}(z) x_{k} x_{l} = 0 \\ \sum_{1 \le i < j \le 3} \beta_{ij}^{(1)}(z) x_{i} x_{j} + \sum_{4 \le k < l \le 6} \beta_{kl}^{(2)}(z) x_{k} x_{l} = 0 \\ \sum_{1 \le i < j \le 3} \gamma_{ij}^{(1)}(z) x_{i} x_{j} + \sum_{4 \le k < l \le 6} \gamma_{kl}^{(2)}(z) x_{k} x_{l} = 0 \\ \end{array} \right\}$$

is the Enriques surface whose period is the given $z \in \mathbb{L} \otimes \mathbb{R} + i\mathcal{C}^+_{\mathbb{L}}$.

For elliptic curves, this was solved by Jacobi using theta constants.

Problem

On a generic Jacobian Kummer surface, there exists 31 conjugacy classes of free involutions (Mukai-Ohashi '09). They split into three families:

- 10 switches,
- 15 Hutchinson-Göpel involutions,
- 6 Hutchinson-Weber involutions.

Recall that, as the average of the Borcherds Φ -function by 10 switches, we get Igusa's Siegel modular form Δ_5 :

$$\prod_{\substack{(ijk\\lmn)}} \left\| \Phi(K(C_{\lambda}))/\iota_{\binom{ijk}{lmn}} \right\| = \|\Delta_5(C_{\lambda})\|^8.$$

Determine the Siegel modular form constructed as the average of the Borcherds Φ -function by the 15 Hutchinson-Göpel involutions (resp. 6 Hutchinson-Weber involutions).