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Abstract. These notes form an expanded version of some introductory lec-
tures to be delivered at the Workshop on Arithmetic and Geometry of K3

surfaces and Calabi-Yau Threefolds, August 16-25, 2011, at the Fields Insti-

tute. After presenting a general overview, we begin with some rudimentary
aspects of Hodge theory and algebraic cycles. We then introduce Deligne co-

homology, as well as generalized cycles that are connected to higher K-theory,

and associated regulators. Finally, we specialize to the Calabi-Yau situation,
and explain some recent developments in the field.
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0 Introduction

These lecture notes concern that part of Calabi-Yau geometry that involves al-
gebraic cycles - typically built up from special subvarieties, such as rational points
and rational curves. From these algebraic cycles, one forms various doubly indexed
groups, called higher Chow groups, that mimic simplicial homology theory in al-
gebraic topology. These Chow groups, come equipped with various maps whose
target is a certain transcendental cohomology theory called Deligne cohomology.

More precisely, these maps are called regulators, from the higher cycle groups of
S. Bloch, denoted by CHk(X,m), of a projective algebraic manifold X, to Deligne
cohomology, viz.:

(1) clr,m : CHr(X,m)→ H2r−m
D

(
X,A(r)

)
,

where A ⊆ R is a subring, A(r) := A(2π
√
−1)r is called the “Tate twist”, and as

we will indicate below, some striking evidence that these regulator maps become
highly interesting in the case where X is Calabi-Yau. More specifically, we consider
the following case scenarios below.

When m = 0, the objects of interest are the null homologous codimension 2 (=
dimension 1) cycles CH2

hom(X) = CH1,hom(X) on a projective threefold X, and
where in this case, (1) becomes the Abel-Jacobi map:

(2) Φ2 : CH2
hom(X)→ J2(X) =

{H3,0(X)⊕H2,1(X)}∨

H3(X,Z)
,

defined by a process of integration, J2(X) being the Griffiths’ jacobian of X. One
of the reasons for introducing the Abel-Jacobi map is to study the Griffiths group
Griff2(X)⊗Q. If we put CHr

alg(X) to be codimension r cycles algebraically equiva-
lent to zero, then the Griffiths group is given by Griffr(X) := CHr

hom(X)/CHr
alg(X).

When m = 1, the object of interest is the group

CH2(X, 1) =

{∑
j,cdXZj=1

(
fj , Zj

)∣∣∣∣ fj ∈ C(Zj)×∑
j div(fj) = 0

}
Image

(
Tame symbol

) ,

on a projective algebraic surface X. If we mod out by the subgroup of CH2(X, 1)
where the fj ’s ∈ C×, then we arrive at the quotient group of indecomposables
CH2

ind(X, 1) which plays an analogous role to the Griffiths group above. Moreover
if we assume that the torsion part of H3(X,Z) is zero, then in this case (1) becomes
a map:

(3) cl2,1 : CH2
ind(X, 1)→

[
H2,0(X)⊕H1,1

tr (X)
]∨

H2(X,Z)
,

where H1,1
tr (X) is the transcendental part of H1,1(X), being the orthogonal com-

plement to the subgroup of algebraic cocyles.

In the case m = 2, the objects of interest are the group of symbols:

CH2(X, 2) =
{
ξ :=

∏
j

{fj , gj}
∣∣∣∣ fj , gj ∈ C(X)×∑

j,p∈X
(
(−1)νp(fj)νp(gj)( f

νp(gj)

gνp(fj)
)(p), p

)
= 0

}
,



ALGEBRAIC CYCLES AND TRANSCENDENTAL ALGEBRAIC GEOMETRY 3

[νp = order of vanishing at p], on a smooth projective curve X. If we mod out by
the subgroup of symbols {f, g} where f, g ∈ C×, then the group of interest is the
quotient group of indecomposables CH2

ind(X, 2). In this case (1) becomes the real
regulator:

(4) r2,2 : CH2
ind(X, 2)→ H1(X,R).

A first point we wish to make is that if X is a smooth projective variety of
dimension d, where 1 ≤ n ≤ 3, then the maps and objects

• r2,2 in (4) and CH2
ind(X, 2)⊗Q for d = 1,

• cl2,1 in (3) and CH2
ind(X, 1)⊗Q for d = 2,

• Φ2 in (2) and Griff2(X)⊗Q for d = 3,
become especially interesting and generally nontrivial in the case where X is a
Calabi-Yau variety; moreover, in a sense that will be specified later, these maps are
essentially “trivial” when restricted to indecomposables, for X either of “lower or
higher order” to its Calabi-Yau counterpart. The reason for this appears to be to
the abundance of special types of subvarieties on the Calabi-Yau varieties.

Several recent developments in the context of algebraic cycles are included in
these lecture notes. The intended target audience is advanced graduate students,
post-doctoral fellows and non-specialists.

1. Notation

Throughout these notes, and unless otherwise specified, X = X/C is a projective
algebraic manifold, of dimension d. A projective algebraic manifold is the same
thing as a smooth complex projective variety. If V ⊆ X is an irreducible subvariety
of X, then C(V ) is the rational function field of V , with multiplicative group C(V )×.

2. Some Hodge theory

Some useful reference material for this section is [16] and [24].

Let EkX = C-valued C∞ k-forms on X. We have the decomposition:

EkX =
⊕
p+q=k

Ep,qX , Ep,qX = Eq,pX ,

where Ep,qX are the C∞ (p, q)-forms which in local holomorphic coordinates z =
(z1, . . . , zn) ∈ X, are of the form:∑

|I|=p,|J|=q

fIJdzI ∧ dzJ , I = 1 ≤ i1 < · · · < ip ≤ n,

J = 1 ≤ j1 < · · · < jq ≤ n
dzI = dzi1 ∧ · · · ∧ dzip , dzJ = dzj1 ∧ · · · ∧ dzjq .

One has the differential d : EkX → Ek+1
X , and we define

Hk
DR(X,C) =

ker d : EkX → Ek+1
X

dEk−1
X

.
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The operator d decomposes into d = ∂+∂, where ∂ : Ep,qX → Ep+1,q
X and ∂ : Ep,qX →

Ep,q+1
X . Further d2 = 0⇒ ∂2 = ∂

2
= 0 = ∂∂ + ∂∂.

The above decomposition descends to the cohomological level, viz.,

Theorem 2.1 (Hodge decomposition).

Hk
sing(X,Q)⊗Q C ' Hk

DR(X,C) =
⊕
p+q=k

Hp,q(X),

where Hp,q(X) = d-closed (p, q)-forms (modulo coboundaries), and

Hp,q(X) = Hq,p(X).

Furthermore:

Hp,q(X) '
Ep,qX,d−closed

∂∂Ep−1,q−1
X

.

Some more terminology: Hodge filtration. Put

F kHi(X,C) =
⊕
p≥k

Hp,i−p(X).

Now recall dimX = d.

Theorem 2.2 (Poincaré and Serre Duality). The following pairings induced by

(w1, w2) 7→
∫
X

w1 ∧ w2,

are non-degenerate:
Hk

DR(X,C)×H2d−k
DR (X,C)→ C,

Hp,q(X)×Hd−p,d−q(X)→ C.
Therefore Hk(X) ' H2d−k(X)∨, Hp,q(X) ' Hd−p,d−q(X)∨

Example 2.3.
Hi(X,C)
F rHi(X,C)

' F d−r+1H2n−i(X,C)∨.

For the next three sections, the reader is encouraged to consult the “Lectures on
Algebraic Cycles” on my website: http://www.math.ualberta.ca/Lewis−JD.html

3. Algebraic cycles (classical)

Recall X/C smooth projective, dimX = d. For 0 ≤ r ≤ d, put zr(X) (=
zd−r(X)) = free abelian group generated by subvarieties of codim r (= dim d− r)
in X.

Example 3.1. (i) zd(X) = z0(X) = {
∑M
j=1 njpj | nj ∈ Z, pj ∈ X}.

(ii) z0(X) = zd(X) = Z{X} ' Z.

(iii) Let X1 := V (z2
2z0 − z3

1 − z0z
2
1) ⊂ P2, and X2 := V (z2

2z0 − z3
1 − z1z

2
0) ⊂ P2.

Then 3X1 − 5X2 ∈ z1(P2) = z1(P2).



ALGEBRAIC CYCLES AND TRANSCENDENTAL ALGEBRAIC GEOMETRY 5

(iv) codimXV = r−1, f ∈ C(V )×. div(f) := (f) := (f)0−(f)∞ ∈ zr(X) (principal
divisor). [Note: div(f) is easy to define, by first passing to a normalization of V
(using the properties of DVR), together with a proper push-forward.]

Divisors in (iv) generate a subgroup

zrrat(X) ⊂ zr(X). (rational equivalence)

Definition 3.2.
CHr(X) := zr(X)/zrrat(X),

is called the r-th Chow group of X.

Remark 3.3. On can show that ξ ∈ zrrat(X) ⇔ ∃ w ∈ zr(P1 × X), each
component of the support |w| flat over P1, such that ξ = w[0] − w[∞]. [Here
w[t] := pr2,∗

(
〈pr∗1(t) • w〉P1×X

)
.] If one replaces P1 by any choice of smooth con-

nected curve Γ (not fixed!) and 0, ∞ by any 2 points P, Q ∈ Γ, then one obtains
the subgroup zralg(X) ⊂ zr(X) of cycles that are algebraically equivalent to zero.
There is a fundamental class map (described later) zr(X) → H2r(X,Z) whose
kernel is denoted by zrhom(X). One has inclusions:

zrrat(X) ⊆ zralg(X) ⊆ zrhom(X) ⊂ zr(X).

Definition 3.4. Put

(i) CHr
alg(X) := zralg(X)/zrrat(X)

(ii) CHr
hom(X) := zrhom(X)/zrrat(X)

(iii) Griffr(X) := zrhom(X)/zralg(X) = CHr
hom(X)/CHr

alg(X). (Griffiths group)

The Griffiths group is known to be trivial in the cases r = 0, 1, d.

4. Generalized cycles

The basic idea is this:

CHr(X) = Coker
( ⊕

cdXV=r−1

C(V )× div−−→ zr(X)
)
.

In the context of Minor K-theory, this is just(
→ · · ·

⊕
cdXV=r−2

KM
2 (C(V ))

)
Tame−−−→︸ ︷︷ ︸

building a complex on the left

⊕
cdXV=r−1

KM
1 (C(V )) div−−→

⊕
cdXV=r

KM
0 (C(V ))

For a field F, one has the Milnor K-groups KM
• (F), where KM

0 (F) = Z, KM
1 (F) =

F× and

KM
2 (F) =

{
Symbols {a, b}

∣∣∣∣ a, b ∈ F×
}/

Steinberg relations
{a1a2, b} = {a1, b}{a2, b}
{a, b} = {b, a}−1

{a, 1− a} = {a,−a} = 1

 .
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One has a Gersten-Milnor resolution of a sheaf of Milnor K-groups on X, which
leads to a complex whose last three terms and corresponding homologies for 0 ≤
m ≤ 2 are:

(5)

⊕
cdXZ=r−2K

M
2 (C(Z)) T→

⊕
cdXZ=r−1 C(Z)× div→

⊕
cdXZ=r Z

l l l

CHr(X, 2) CHr(X, 1) CHr(X, 0)

where div is the divisor map of zeros minus poles of a rational function, and T is
the Tame symbol map. The Tame symbol map

T :
⊕

cdXZ=r−2

KM
2 (C(Z))→

⊕
cdXD=r−1

KM
1 (C(D)),

is defined as follows. First KM
2 (C(Z)) is generated by symbols {f, g}, f, g ∈ C(Z)×.

For f, g ∈ C(Z)×,

T
(
{f, g}

)
=
∑
D

(−1)νD(f)νD(g)

(
fνD(g)

gνD(f)

)
D

,

where
(
· · ·
)
D

means restriction to the generic point of D, and νD represents order
of a zero or pole along an irreducible divisor D ⊂ Z.

Example 4.1. Taking cohomology of the complex in (5), we have:

(i) CHr(X) := CHr(X, 0) = free abelian group generated by subvarieties of codi-
mension r in X, modulo divisors of rational functions on subvarieties of codimension
r − 1 in X.

(ii) CHr(X, 1) is represented by classes of the form ξ =
∑
j(fj , Dj), where

codimXDj = r − 1, fj ∈ C(Dj)×, and
∑

div(fj) = 0 (and modulo the image
of the Tame symbol).

(iii) CHr(X, 2) is represented by classes in the kernel of the Tame symbol, modulo
the image of a higher Tame symbol.

Example 4.2. (i) X = P2, with homogeneous coordinates [z0, z1, z2]. P1 = `j :=
V (zj), j = 0, 1, 2. Let P = [0, 0, 1] = `0 ∩ `1, Q = [1, 0, 0] = `1 ∩ `2, R = [0, 1, 0] =
`0 ∩ `2. Introduce fj ∈ C(`j)×, where (f0) = P −R, (f1) = Q− P, (f2) = R−Q.
Then ξ :=

∑2
j=0(fj , `j) ∈ CH2(P2, 1) represents a higher Chow cycle.∖/

•P
`1

/∖
`0

−− • −− • −−
Q
/

`2
∖
R

Exercise 4.3. Show that ξ 6= 0. [Hint: Using a well-known fact that CH2(P1, 1) '
C×, choose a suitable line P1 ⊂ P2 and show that ξ

∣∣
P1 6= 1 ∈ C×.]
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(ii) Again X = P2. Let C ⊂ X be the nodal rational curve given by z2
2z0 =

z3
1 + z0z

2
1 (In affine coordinates (x, y) = (z1/z0, z2/z0) ∈ C2, C is given by y2 =

x3 + x2). Let C̃ ' P1 be the normalization of C, with morphism π : C̃ → C. Put
P = (0, 0) ∈ C (node) and let R+Q = π−1(P ). Choose f ∈ C(C̃)× = C(C)×, such
that (f)C̃ = R−Q. Then (f)C = 0 and hence (f, C) ∈ CH2(P2, 1) defines a higher
Chow cycle. ∖

•R∖
/

Q•/
y∖/
•P/∖

5. A detour via Milnor K-theory and the Gersten-Milnor complex

This section provides some of the foundations for the previous section. In the first
part of this section, we follow closely the treatment of Milnor K-theory provided in
[2], which provides the basic foundation for the definitions of higher Chow cycles.
The reader with pressing obligations who prefers to work with concrete examples
may skip this section, without losing sight of the main ideas presented in these
notes.

Let F be a field, with multiplicative group F×, and put T (F×) =
∐
n≥0 T

n(F×),
the tensor product of the Z-module F×. Here T 0(F×) := Z, F× = T 1(F×), a 7→ [a].
If a 6= 0, 1, set ra = [a]⊗ [1− a] ∈ T 2(F×). The two-sided ideal R generated by ra
is graded, and we put:

KM
• F =

T (F×)
R

=
∐
n≥0

KM
n F, (Milnor K−theory).

For example, K0(F) = Z, K1(F) = F×, and KM
2 (F) is the abelian group gener-

ated by symbols {a, b}, subject to the Steinberg relations:

{a1a2, b} = {a1, b}{a2, b}

{a, 1− a} = 1. for a 6= 0, 1
{a, b} = {b, a}−1

{a,−a} = 1.
Furthermore, one can also show that:

(2.1) {a, a} = {−1, a} = {a, a−1} = {a−1, a}.
Quite generally, one can argue that KM

n (F) is generated {a1, . . . , an},
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a1, . . . , an ∈ F×, subject to:

(i) (a1, . . . , an) 7→ {a1, . . . , an},

is a multilinear function from F× × · · · × F× → KM
n (F),

(ii) {a1, . . . , an} = 0,

if ai + ai+1 = 1 for some i < n.
Assume given a field F with discrete valuation ν : F× → Z, with corresponding

discrete valuation ring {a ∈ F | ν(a) ≥ 0}, and residue field k(ν). One has maps
T : KM

• (F) → KM
•−1(k(ν)). Choose π ∈ F× such that ν(π) = 1. If we write

a = a0π
i, b = b0π

j ∈ KM
1 (F), then T (a) = i ∈ Z = KM

0 (k(ν)) and

T{a, b} = (−1)ij
aj

bi
∈ k(ν)× = KM

1 (k(ν)) (Tame symbol).

5.1. Sheafifying everything. Let OX be the sheaf of regular functions on X,
with sheaf of units O×X . As in [21], we put

KMr,X :=

(
O×X ⊗ · · · ⊗ O

×
X

)
J

, (Milnor sheaf),

where J is the subsheaf of the tensor product generated by sections of the form:{
τ1 ⊗ · · · ⊗ τk

∣∣ τi + τj = 1, for some i and j, i 6= j
}
.

[For example, KM1,X = O×X .]
Introduce the Gersten-Milnor complex (a flasque resolution of KMr,X , see [15],

[22]):
KMr,X → KM

r (C(X))→
⊕

cdXZ=1

KM
k−1(C(Z))→ · · ·

→
⊕

cdXZ=r−2

KM
2 (C(Z))→

⊕
cdXZ=r−1

KM
1 (C(Z))→

⊕
cdXZ=r

KM
0 (C(Z))→ 0.

We have
KM

0 (C(Z)) = Z, KM
1 (C(Z)) = C(Z)×,

KM
2 (C(Z)) =

{
symbols {f, g}

/
Steinberg relations

}
.

The last three terms of this complex then are:⊕
cdXZ=r−2

KM
2 (C(Z)) T→

⊕
cdXZ=r−1

C(Z)× div→
⊕

cdXZ=r

Z→ 0

where div is the divisor map of zeros minus poles of a rational function, and T is
the Tame symbol map

T :
⊕

codimXZ=r−2

KM
2 (C(Z))→

⊕
codimXD=r−1

KM
1 (C(D)),

defined earlier.

Definition 5.2. For 0 ≤ m ≤ 2,

CHr(X,m) = Hr−m
Zar (X,KMr,X).

Remark 5.3. The higher Chow groups CHr(W,m) are defined for any non-negative
r & m. See [3], and quasi-projective variety W over a field k.
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6. Hypercohomology

An excellent reference for this is the chapter on spectral sequences in [16].

The reader familiar with hypercohomology can obviously skip this section. Let
(S•≥0, d) be a (bounded) complex of sheaves on X. One has a Cech double complex(

C•(U ,S•), d, δ
)
,

where U is an open cover of X. The k-th hypercohomology is given by the k-th
total cohomology of the associated single complex(

M• := ⊕i+j=•Ci(U ,Sj), D = d± δ
)
,

viz.,
Hk(S•) := lim

→
U
Hk(M•).

Associated to the double complex are two filtered subcomplexes of the associated
single complex, with two associated Grothendieck spectral sequences abutting to
Hk(S•) (where p+ q = k):

′Ep,q2 := Hp
δ (X,Hqd(S

•))

′′Ep,q2 := Hp
d (Hq

δ (X,S•)
The first spectral sequence shows that quasi-isomorphic complexes yield the same
hypercohomology:

Alternate take. Two complexes of sheaves K•1, K•2 are said to be quasi-isomorphic
if there is a morphism h : K•1 → K•2 inducing an isomorphism on cohomology h∗ :
H•(K•1) ∼−→ H•(K•2). Take a complex of acyclic sheaves (K•, d) (viz., Hi>0(X,Kj) =
0 for all j) quasi-isomorphic to S•. Then

Hk(S•) := Hi
(
Γ(K•)

)
.

For example if L•,• is an [double complex] acyclic resolution of S•, then the asso-
ciated single complex K• = ⊕i+j=•Li,j is acyclic and quasi-isomorphic to S•.

Example 6.1. Let (Ω•X , d), (E•X , d) be complexes of sheaves of holomorphic and
C-valued C∞ forms respectively. By the holomorphic and C∞ Poincaré lemmas,
one has quasi-isomorphisms:

(C→ 0→ · · · ) ≈−→ (Ω•X , d) ≈−→ (E•X , d),

where the latter two are Hodge filtered. The first spectral sequence of hypercoho-
mology shows that

Hk(X,C) ' Hk(C→ 0→ · · · ) ' Hk((F p)Ω•X) ' Hk((F p)E•X).

The second spectral sequence of hypercohomology applied to the latter term, using
the known acyclicity of E•X , yields

Hk(F pE•X) ' ker d : F pEkX → F pEkX
dF pEk−1

X

' F pHk
DR(X),

where the latter isomorphism is due to the Hodge to de Rham spectral sequence.
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7. Deligne cohomology

A standard reference for this section is [14]. For a subring A ⊆ R, we introduce
the Deligne complex

AD(r) : A(r)→ OX → Ω1
X → · · · → Ωr−1

X︸ ︷︷ ︸
call this Ω•<rX

.

Definition 7.1. Deligne cohomology is given by the hypercohomology:

Hi
D(X,A(r)) = Hi(AD(r)).

From Hodge theory, one has the isomorphisms

Hi(Ω•≥rX ) ' F rHi(X,C), Hi(Ω•<rX ) ' Hi(X,C)
F rHi(X,C)

.

Thus applying H•(−) to the short exact sequence:

0→ Ω•<rX [−1]→ AD(r)→ A(r)→ 0,

yields the short exact sequence:

(6)
0→ Hi−1(X,C)

Hi−1(X,A(r)) + F rHi−1(X,C)
→ Hi

D(X,A(r))

→ Hi(X,A(r)) ∩ F rHi(X,C)→ 0.

If we put A = Z, and i = 2r, then (6) becomes:

0→ Jr(X)→ Hi
D(X,Z(r))→ Hgr(X)→ 0,

where Jr(X) is the Griffiths jacobian, and the Hodge group

H2r(X,Z(r)) ∩ F rH2r(X,C)

is more precisely given by Hgr(X) = {w ∈ H2r(X,Z(r)) | w ∈ Hr,r(X,C), via the
map H2r(X,Z(r))→ H2r(X,C), induced by the inclusion Z(r) ↪→ C}.

Next, if A = Z and i ≤ 2r − 1, then from Hodge theory, H2r−1(X,Z(r)) ∩
F rH2r−1(X,C) is torsion. In particular, there is a short exact sequence:

0→ Hi−1(X,C)
F rHi−1(X,C) +Hi−1(X,Z(r))

→ Hi
D(X,Z(r))→ Hi

tor(X,Z(r))→ 0,

where Hi
tor(X,Z(r)) is the torsion subgroup of Hi(X,Z(k)). The compatibility of

Poincaré and Serre duality yields the isomorphism:

Hi−1(X,C)
F rHi−1(X,C) +Hi−1(X,Z(r))

' F d−r+1H2d−i+1(X,C)∨

H2d−i+1(X,Z(d− r))
.

Finally, if A = R and i = 2r − 1, then Hi
tor(X,R(r)) = 0; moreover if we set

πr−1 : C = R(r)⊕ R(r − 1)→ R(r − 1)
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to be the projection, then we have the isomorphisms:

H2r−1
D (X,R(r)) ' H2r−1(X,C)

F rH2r−1(X,C) +H2r−1(X,R(r))

πr−1

−→
'

Hr−1,r−1(X,R)⊗ R(r − 1)

=: Hr−1,r−1(X,R(r − 1))

'
{
Hd−r+1,d−r+1(X,R(d− r + 1))

}∨
.

8. Examples of Hr−m
Zar (X,KMr,X) and corresponding regulators

8.1. Case m = 0 and CY threefolds. In this case, one works with the commu-
tative diagram:⊕

codimXZ=r−1K
M
1 (C(Z)) →

⊕
codimXZ=rK

M
0 (C(Z))∣∣∣∣o ∣∣∣∣o

⊕
codimXZ=r−1 C(Z)× div→

⊕
codimXZ=r Z

.

It easily follows from this that:

Hr
Zar(X,KMr,X) '

Γ
(⊕

codimXZ=r Z
)

= zr(X)

div
(
Γ(
⊕

codimXZ=r−1 C(Z)×)
)

=
{

Free abelian group of codim r subvarieties in X

Divisors of rational functions on Z of codim r − 1 in X

}
=: CHr(X),

i.e. gives the classical description of CHr(X). The fundamental class map:

clr : CHr(X)→ H2r
DR(X,C) ' H2d−2r

DR (X,C)∨,

can be defined in a number of equivalent ways:

(i) The d log map KMr,X → ΩrX , {f1, ..., fr} 7→
∧
j d log fj , induces a morphism of

complexes {KMr,X → 0} → Ω•≥rX [r], and thus

CHr(X) = Hr
Zar(X,KMr,X) = Hr

(
{KMr,X → 0}

)
→ Hr

(
Ω•≥rX [r]

)
= H2r(Ω•≥rX ) = F rH2r

DR(X,C).

(ii) Let V ⊂ X be a subvariety of codimension r in X, and {w} ∈ H2d−2r
DR (X,C),

(de Rham cohomology). Define clr(V )(w) = 1
(2π
√
−1)d−r

∫
V ∗
w, and extend to

CHr(X) by linearity, where V ∗ = V \Vsing. [Note that dimR V = 2d − 2r.] The
easiest way to show that clr is well-defined (closed current, and integrally defined)
is to first pass to a desingularization of V above, and apply some standard Stokes’
theorem and fundamental class arguments.

(iii) Thirdly one has a fundamental class generator {V } ∈ H2d−2r(V,Z(d−r)) '
H2r
V (X,Z(r))→ H2d−2r(X,Z((d− r)) ' H2r(X,Z(r)).
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In summary we have

clr : CHr(X)→ Hgr(X) := H2r(X,Z(r)) ∩Hr,r(X).

This map fails to be surjective in general for r > 1 (cf. [24]).

Conjecture 8.2 (Hodge).

clr : CHr(X)⊗Q→ H2r(X,Q(r)) ∩Hr,r(X),

is surjective.

Next, the Abel-Jacobi map:

Φr : CHr
hom(X)→ Jr(X),

is defined as follows. Recall that

Jr(X) =
H2r−1(X,C)

F rH2r−1(X,C) +H2r−1(X,Z(r))
' F d−r+1H2d−2r+1(X,C)∨

H2d−2r+1(X,Z(d− r))
,

is a compact complex torus, called the Griffiths jacobian.

Prescription for Φr: Let ξ ∈ CHr
hom(X). Then ξ = ∂ζ bounds a 2d − 2r + 1 real

dimensional chain ζ in X. Let {w} ∈ F d−r+1H2d−2r+1(X,C). Define:

Φr(ξ)({w}) =
∫
ζ

w (modulo periods).

That Φr is well-defined follows from the fact that F `Hi(X,C) depends only on the
complex structure of X, namely

F `Hi(X,C) '
F `EiX,d−closed

d
(
F `Ei−1

X

) ,

where we recall that EiX are the C∞ complex-valued i-forms on X.

Theorem 8.3. If F r−1H2r−1(X,C)∩H2r−1(X,Q(r)) = 0, then there is an induced
map

Φr : Griffr(X)→ Jr(X).

In particular Φr
(
CHr

alg(X)
)

= 0 ∈ Jr(X). This is the case for a very general CY
threefold with r = 2.

Both maps (clr, Φr) can be combined to give

clr,0 : CHr(X) = CHr(X, 0)→ H2r
D (X,Z(r)),

with commutative diagram:

0→ CHr
hom(X) → CHr(X)→ CHr(X)

CHrhom(X) → 0

Φr ↓ clr,0 ↓ clr ↓

0→ Jr(X) → H2r
D (X,Z(r))→ Hgr(X) → 0.

The map clr,0 can be defined using a local version of an exact sequence similar to
(6), using a cone complex description of H•D(X,Z(•)), together with a weak purity
argument.
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8.4. Deligne cohomology and normal functions. Suppose that ξ ∈ CHr(X)
is given and that Y ⊂ X is a smooth hypersurface. Then there is a commutative
diagram

CHr(X) → CHr(Y )y y
H2r
D (X,Z(r)) → H2r

D (Y,Z(r));

Further, if we assume that the restriction ξY ∈ CHhom(Y ) is null-homologous, then
clr,0(ξ) ∈ H2r

D (X,Z(r)) 7→ Jr(Y ) ⊂ H2r
D (Y,Z(r)). Next, if Y = X0 ∈ {Xt}t∈S is a

family of smooth hypersurfaces of X, then such a ξ determines a holomorphically
varying map νξ(t) ∈ Jr(Xt), called a normal function. Roughly speaking, the class
clr(ξ) = δ(νξ) ∈ Hr,r(X,Z(r)) is called the topological invariant of νξ, i.e. νξ
determines clr(ξ).

Example 8.5 (Griffiths’ famous example ([18])). Let:

X = V (z5
0 + z5

1 + z5
2 + z5

3 + z5
4 + z5

5) ⊂ P5

be the Fermat quintic fourfold. Consider these 3 copies of P2 ⊂ X:

L1 := V (z0 + z1, z2 + z3, z4 + z5),

L2 := V (z0 + ξz2, z2 + ξz3, z4 + z5),

L3 := V (z0 + ξz1, z2 + ξz3, z4 + ξz5).

where ξ is a primitive 5-th root of unity. Then L3 • (L1 − L2) = 1 6= 0, hence
ξ := [L1 − L2] is a non-zero class in H2,2(X,Z(2)). Further, if {Xt}t∈U⊂P1 is a
general pencil of smooth hyperplane sections of X, and if t ∈ U , then it is well
know that ξt ∈ CH2

hom(Xt) by a theorem of Lefschetz. Since δ(νξ) = [L1−L2] 6= 0,
it follows that νξ(t) is non-zero for most t ∈ U . Therefore for very general t ∈ U ,
Griff2(Xt) contains an infinite cycle group by Theorem 8.3. The upshot is that if:

Y = V

(
z5

0 + z5
1 + z5

2 + z5
3 + z5

4 +
( 4∑
j=0

ajzj
)5) ⊂ P4,

for general a0, . . . , a4 ∈ C, then Griff2(Y ) 6= 0 contains an infinite cyclic subgroup.
H. Clemens was the first to show that the Griffiths group of a general quintic
threefold in P4 is [countably] infinite dimensional, when tensored over Q. Later it
was shown by C. Voisin that the same holds for general CY threefolds. The idea is
to make use of the rational curves on such threefolds.

Theorem 8.6 (See [1], [17], [19], [18], [9], [30]). Let X ⊂ P4 be a (smooth) threefold
of degree d. If d ≤ 4, then Φ2 : CH2

hom(X) ∼−→ J2(X) is an isomorphism. Now
assume that X is general. If d ≥ 6 then Im

(
Φ2

)
is torsion. If d = 5, then Im

(
Φ2

)
⊗

Q is countably infinite dimensional.

Theorem 8.7 ([30]). If X is a very general Calabi-Yau threefold, then Im
(
Φ2

)
is a countably infinite dimensional, when tensored over Q. In particular, since
Φ2(CH2

alg(X)) = 0, it follows that Griff2(X; Q) is [countably] infinite dimensional
over Q.
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8.8. Case m = 1 and K3 surfaces. Recall the Tame symbol map

T :
⊕

codimXZ=r−2

KM
2 (C(Z))→

⊕
codimXD=r−1

KM
1 (C(D)).

Then:

CHr(X, 1) = Hr−1
Zar (X,KMr,X) '

{ ∑
j(fj , Dj)

∣∣ ∑
j div(fj) = 0

T
(
Γ(
⊕

codimXZ=r−2K
M
2 (C(Z)))

)} .
We recall:

Definition 8.9. The subgroup of CHr(X, 1) represented by C× ⊗ CHr−1(X) is
called the subgroup of decomposables CHr

dec(X, 1) ⊂ CHr(X, 1). The space of
indeconposables is given by

CHr
ind(X, 1) :=

CHr(X, 1)
CHr

dec(X, 1)
.

The map
clr,1 : CHr

hom(X, 1)→ H2r−1
D (X,Z(r)),

is given by a map

clr,1 : CHr
hom(X, 1)→ F d−r+1H2d−2r+2(X,C)∨

H2d−2r+2(X,Z(d− r))
,

defined as follows. Assume given a higher Chow cycle ξ =
∑N
i=1(fi, Zi) representing

a class in CHr
hom(X, 1). Then via a proper modification, we can view fi : Zi → P1

as a morphism, and consider the 2d − 2r + 1-chain γi = f−1
i ([−∞, 0]). Then∑N

i=1 div fi = 0 implies that γ :=
∑N
i=1 γi defines a 2d − 2r + 1-cycle. Since ξ is

null-homologous, it is easy to show that γ bounds some real dimensional 2d−2r+2-
chain ζ in X, viz.,∂ζ = γ. For ω ∈ F d−r+1H2d−2r+2(X,C), the current defining
clr,1(ξ) is given by:

clr,1(ξ)(ω) =
1

(2π
√
−1)d−r+1

[ N∑
i=1

∫
Zi\γi

ω log fi − 2π
√
−1
∫
ζ

ω

]
,

where we choose the principal branch of the log function. One can easily check
that the current defined above is d-closed. Namely, if we write ω = dη for some
η ∈ F d−r+1E2d−2r

X , then by a Stokes’ theorem argument, both integrals above
contribute to “periods” which cancel.

Using the description of real Deligne cohomology given above, and the regula-
tor formula, we arrive at the formula for the real regulator rr,1 : CHr(X, 1) →
H2r−1
D (X,R(r)) = Hr−1,r−1(X,R((r − 1)) ' Hd−r+1,d−r+1(X,R(d − r + 1))∨.

Namely:

rr,1(ξ)(ω) =
1

(2π
√
−1)d−r+1

∑
j

∫
Zj

ω log |fj |.

Example 8.10. Suppose that X is a surface. Then we have

cl2,1 : CH2
hom(X, 1)→ {H

2,0(X)⊕H1,1(X)}∨

H2(X,Z)
.



ALGEBRAIC CYCLES AND TRANSCENDENTAL ALGEBRAIC GEOMETRY 15

The corresponding transcendental regulator is defined to be

Φ2,1 : CH2
hom(X, 1)→ H2,0(X)∨

H2(X,Z)
,

Φ2,1(ξ)(ω) =
∫
ζ

ω.

and real regulator

r2,1 : CH2(X, 1)→ H1,1(X,R(1))∨ ' H1,1(X,R(1)),

r2,1(ξ)(ω) =
1

2π
√
−1

∑
j

∫
Zj

log |fj |ω.

There is an induced map

r2,1 : CH2
ind(X, 1)→ H1,1

tr (X,R(1)).

If X is a K3 surface, then CH2
hom(X, 1) = CH2(X, 1), hence there is an induced

map

Φ2,1 : CH2
ind(X, 1)→ H2,0(X)∨

H2(X,Z)
.

Theorem 8.11. (i) ([26]) Let X ⊂ P3 be a smooth surface of degree d. If d ≤ 3,
then r2,1 : CH2(X, 1) → H1,1(X,R(1)) is surjective; moreover CH2

ind(X, 1; Q) = 0.
Now assume that X is general. If d ≥ 5, then Im(r2,1) is “trivial”.

(ii) [Hodge-D-conjecture for K3 surfaces ([6])] Let X be a general member of a
universal family of projective K3 surfaces, in the sense of the real analytic topology.
Then

r2,1 : CH2(X, 1)⊗ R→ H1,1(X,R(1)),

is surjective.

(iii) ([7]) Let X/C be a very general algebraic K3 surface. Then the transcen-
dental regulator Φ2,1 is non-trivial. Quite generally, if X is a very general member
of a general subvariety of dimension 20− `, describing a family of K3 surfaces with
general member of Picard rank `, with ` < 20, then Φ2,1 is non-trivial.

Remark 8.12. (i) Regarding part (iii) of Theorem 8.11, one can ask whether
Φ2,1 can be non-trivial for those K3 X with Picard rank 20, (which are rigid and
therefore defined over Q)? In [7], some evidence is provided in support of this.

(ii) One of the key ingredients in the proof of the above theorem is the existence
of plenty of nodal rational curves on a general K3 surface. Indeed, there is the
following result:

Theorem 8.13 ([5]). For a very general K3 surface, the set of rational on X is a
dense subset in the strong (= analytic) topology.
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8.14. Case m = 2 and elliptic curves. Regulator examples on CHk(X, 2) Let
X be a compact Riemann surface. In [25] there is constructed a real regulator

(7) r : CH2(X, 2)→ H1(X,R(1)),

given by

ω ∈ H1(X,R) ' H1(X,R(1))∨ 7→
∫
X

[
log |f |d log |g| − log |g|d log |f |

]
∧ ω

= 2
∫
X

log |f |d log |g| ∧ ω, (by a Stokes′ theorem argument).

Alternatively, up to a twist, and real isomorphism, this is the same as the regulator
r2,2 in (4).

(8)
1

2π
√
−1

∫
X

[
log |f |π1

(
dg

g

)
− log |g|π1

(
df

f

)]
∧ ω.

This latter formula has the following homological version (see [28]). Fix p ∈ X,
and consider any loop γ in X\{|(f)| ∪ |(g)|} based at p. Then via Poincaré duality
H1(X,R) ' H1(X,R),

(9) γ 7→ 1
2π

Im
(∫

γ

log f
dg

g
− log |g(p)|

∫
γ

df

f

)
.

To show that the formulas (8) and (9) agree on CH2(X, 2), we work out the
details below. First of all, observe that:

π1

(
dg

g

)
= π1(d log g) =

√
−1d arg(g) ; Re

(
dg

g

)
= d log |g|.

Next,

Im
[∫

γ

(log f)
dg

g
− log |g(p)|

∫
γ

df

f

]
= −
√
−1π1

[∫
γ

(log f)
dg

g
− log |g(p)|

∫
γ

df

f

]
= − log |g(p)| argγ(f) +

∫
γ

arg(f)d log |g|+
∫
γ

log |f |d arg(g).

Note that
d
(

arg(f) log |g|
)

= log |g|d arg(f) + arg(f)d log |g|,
and by Stokes’ theorem:∫

γ

d
(

arg(f) log |g|
)

= log |g(p)| argγ(f).

Therefore:
1

2π
Im
(∫

γ

log f
dg

g
− log |g(p)|

∫
γ

df

f

)
=

1
2π

∫
γ

[
log |f |d arg(g)− log |g|d arg(f)

]
=

1
2π
√
−1

∫
γ

[
log |f |π1

(
dg

g

)
− log |g|π1

(
df

f

)]
.
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Finally, formulas (8) and (9) coincide on CH2(X, 2) by Poincaré duality, where
ω := [γ], and where [γ] ∈ H1(X,R) is the Poincaré dual of γ ∈ H1(X,R).

8.15. Bloch’s construction on K2(X), for an elliptic curve X. Let X be an
elliptic curve and assume given f, g ∈ C(X)× such that Σ := |div(f)| ∪ |div(g)| are
points of order N in Pic(X). Then

T
(
{f, g}N

)
∈
∐

C× and 7→ 0 ∈ Pic(X)⊗ C×.

Thus there exists {hi} ∈ C(X)× and {ci} ∈ C× such that {f, g}N
∏
{hi, ci} ∈

CH2(X, 2).1 Note that the terms {hi, ci} do not contribute to the regulator value
by the formula in (6.11) above. Clearly this construction takes advantage of the
existence of a dense subset of torsion points on X.

Bloch ([4]) shows that the real regulator is nontrivial for general elliptic curves,
and indeed A. Collino ([11]) shows that the regulator image of CH2(X, 2) for a
general elliptic curve X is infinite dimensional (over Q). For curves X of genus
g > 1, the problem of constructing classes in CH2(X, 2) seems to be related to
the fact that under the Abel-Jacobi mapping Φ : X → J1(X), p 7→ {p − p0},
the inverse image of the torsion subgroup, Φ−1(J1(X)tor), is finite. This is due
to Raynaud’s mixed characteristic proof of the Mumford-Manin conjecture ([29]).
From a different perspective, and using infinitesimal methods, A. Collino (op. cit.)
proves that for a general curve X of genus g > 1, the image of the regulator map
CH2(X, 2)→ H2

D(X,Z(2)) is torsion, hence the real regulator image is zero.
On the flip side, one can arrive at an analytic proof of the following (weaker)

version of the Mumford-Manin conjecture ([25]):

6.15 Let X ⊂ P2 be a general curve of degree d ≥ 3, and consider the Abel-
Jacobi map X ↪→ J1(X). Put Γ = X ∩ J1

tor(X). Then Γ is dense in X ⇔ d = 3.

The basic idea of proof is this. Let [z0, z1, z2] be homogeneous cordinates for P2,
and let (x, y) = (z1/z0, z2/z0) be corresponding affine cordinates. Via a degenera-
tion argument, one can show that:∫

X

[
log |x|d log |y| − log |y|d log |x|

]
∧ ω 6= 0,

for a suitable choice of real 1-form ω on X, and for general such X ⊂ P2. It is
notationally more convenient to write this as:∫

X

[
log |f |d log |g| − log |g|d log |f |

]
∧ ω 6= 0,

1This uses the Weil reciprocity theorem. Let X be a compact Riemann surface, f, g ∈ C(X)×,
and for p ∈ X, write

Tp{f, g} = (−1)νp(g)νp(f)
„

fνp(g)

gνp(f)

«˛̨̨̨
p

∈ C×.

Note that for p 6∈ |div(f)|
S
|div(g)|, we have Tp{f, g} = 1. Thus we can write T{f, g} =P

p∈X Tp{f, g}. Weil reciprocity says that
Q
p∈X Tp{f, g} = 1. Let us rewrite this as follows.

If we write T{f, g} =
PM
j=1(cj , pj), where pj ∈ X and cj ∈ C×, then

QM
j=1 cj = 1. Now

fix p ∈ X and let us suppose that Npj ∼rat Np for all j. Thus there exists hj ∈ C(X)×

such that (hj) = Npj − Np. Then T{hj , cj} = (cNj , p) + (c−Nj , pj). The result is that

T
`
{f, g}N{h1, c1} · · · {hM , cM}

´
=
QM
j=1(cNj , p) = (1, p) = “0”.
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for some f, g ∈ C(X)×. Now assume that Γ is dense in X, and choose 0-cycles
ξf , ξg “close to” div(f) and div(g) respectively, such that ξf , ξg are supported on
Γ. Thus for some integer N > 0, we can write Nξf = (f̃), Nξg = (g̃) for some
f̃ , g̃ ∈ C(X)×, and for which∫

X

[
log |f̃ |d log |g̃| − log |g̃|d log |f̃ |

]
∧ ω 6= 0, (see [25] for details).

This leads us to the setting where we may assume that the divisor sets of f and g are
torsion points, of order N say. Thus we can extend {f, g} to a class ξ ∈ CH2(X, 2),
for which r(ξ) 6= 0. However, as we mentioned above, from the work of A. Collino,
the real regulator image is zero for a general curve X ⊂ P2 of degree ≥ 4, and more
generally for a general curve of genus g > 1. Thus in our case, we have established
that Γ dense in X ⇒ d = 3. The converse statement is obvious.
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