This assignment is due in class on Wednesday February 24, 2010.
Exercise 1. The leverage ratio or debt/equity ratio of a firm is defined to be the total debt of the firm divided by the equity $L_{t}=D_{t} / E_{t}$. A highly leveraged firm has a lot of debt which might indicate a danger of default, and certainly a susceptibility to rising interest rates.

1. Consider the Merton model with parameters $\mu=r=0.05$ and $\sigma=0.20$. Use MATLAB or similar to plot the value of the debt D_{0} as a function of debt maturity T for the following leverage levels: $10,3,1,1 / 3,1 / 10$. (Hint: W.L.O.G. you may set $K=1$. Then you will need to use a root finding method (e.g. Newton-Raphson) to find the value of A_{0} for a given level of leverage.)
2. Thinking of $D_{0}(T)$ as the price of a zero coupon defaultable bond, compute the credit spread (defaultable bond yield minus default free bond yield) as a function over T, again for the same leverage levels.

Exercise 2. For any $s<T$, compute the conditional probability density function $p_{\tau}\left(t \mid \mathcal{F}_{s}\right), t>$ s for the time to default τ in the Black-Cox model. What is the behaviour of p_{τ} as $t \rightarrow s+$? Does this model have a default intensity?

Exercise 3. Course Notes Exercise 24.
Exercise 4. Course Notes Exercise 25.
Exercise 5. Course Notes Exercise 28.
Exercise 6. Let the spot interest rate r_{t} be \mathcal{G}_{t}-adapted. Use Proposition 5.3.1 directly to prove Lando's formula for the price of a zero-coupon, zero-recovery bond:

$$
\begin{equation*}
H_{t}^{c} \bar{P}_{t}(T):=E^{Q}\left[H_{T}^{c} e^{-\int_{t}^{T} r_{s} d s} \mid \mathcal{F}_{t}\right]=H_{t}^{c} E^{Q}\left[e^{-\int_{t}^{T}\left[r_{s}+\lambda_{s}\right] d s} \mid \mathcal{G}_{t}\right] \tag{1}
\end{equation*}
$$

