Assignment 3 Foundations of Mathematical Finance - Winter 2010 Fields Institute

17/03/2010

1. Let τ be a stopping time and $t \in \mathbb{R}_+$.

- (i) Show that, in general, τt is a *not* a stopping time.
- (ii) Show that $\tau + t$ is a predictable stopping time.
- (iii) Show that if $\tau \equiv t$ a.s., then $\mathcal{F}_{\tau} = \mathcal{F}_t$ and $\mathcal{F}_{\tau^-} = \bigvee_{s < t} \mathcal{F}_s$.

2. Let τ be an exponentially distributed random variable with parameter $\lambda = 1$ and let $S_t = \mathbf{1}_{\{t \geq \tau\}}$ with its natural filtration. It is clear that S_t is a submartingale and can be decomposed as S = M + A where A is the compensator

$$A_t = \int_0^{s \wedge \tau} \lambda ds = s \wedge \tau$$

Now let

$$H_t = \begin{cases} \frac{1}{1-t}, & \text{for } 0 \le t < 1\\ 0, & \text{for } t \ge 1 \end{cases}$$

Show by an explicit calculation that the stochastic integral $(H \circ S)_t$ exists, whereas $(H \circ A)_t$ doesn't.

3. Let τ be an exponentially distributed random variable with parameter $\lambda = 2$ and let *B* be a Bernoulli random variable with $P[B = 1] = P[B = -1] = \frac{1}{2}$ assumed to be independent from τ .

(i) Define

$$M_t = \begin{cases} 0, & \text{for } t < \tau \\ B, & \text{for } t \ge \tau \end{cases}$$

and show that M is a martingale with respect to its natural filtration.

(ii) Define $H_t = 1/t$ for t > 0 and show that this (deterministic) process is *M*-integrable and show that its stochastic integral $X = H \circ M$ in the sense of semi-martingales is given by

$$X_t = \begin{cases} 0, & \text{for } t < \tau \\ \frac{B}{\tau}, & \text{for } t \ge \tau \end{cases}$$

(iii) Show that $E[|X_t|] = +\infty$, which implies that X is not a martingale.