Assignment 2
 Foundations of Mathematical Finance - Winter 2010 Fields Institute

08/02/2010

1. Solve the utility optimization problem

$$
u(x)=\sup _{H \in \mathcal{H}} E\left[U\left(x+(H \cdot S)_{T}\right)\right], \quad x \in \operatorname{dom}(U)
$$

in a complete market with $\mathcal{M}^{e}(S)=\{Q\}$ and finite probability space $\Omega=\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ for each of the following utility functions U :

1. $U(x)=-\frac{e^{-\gamma x}}{\gamma}, \quad \gamma>0$.
2. $U(x)=\log (x)$.
3. $U(x)=\frac{x^{\alpha}}{\alpha}, \quad \alpha \in(-\infty, 1) \backslash\{0\}$.

For each function, make sure to address the following points:

- Find the conjugate function $V(y)=\sup _{x}[U(x)-y x]$.
- Compute the dual value function $v(y)=E\left[V\left(y \frac{d Q}{d P}\right)\right]$.
- Find $\hat{y}(x)$ satisfying $\left.v^{\prime}(\hat{y})(x)\right)=-x$
- Obtain $\hat{X}_{T}(x)$ using the relation $U^{\prime}\left(\hat{X}_{T}(x)\right)=\hat{y}(x) \frac{d Q}{d P}$.
- Justify the existence of a portfolio $\hat{H} \in \mathcal{H}$ such that $\hat{X}(x)=x+(\hat{H} \cdot S)_{T}$.

