Assignment 2 Foundations of Mathematical Finance - Winter 2010 Fields Institute

08/02/2010

1. Solve the utility optimization problem

$$u(x) = \sup_{H \in \mathcal{H}} E[U(x + (H \cdot S)_T)], \quad x \in \operatorname{dom}(U),$$

in a complete market with $\mathcal{M}^{e}(S) = \{Q\}$ and finite probability space $\Omega = \{\omega_{1}, \ldots, \omega_{n}\}$ for each of the following utility functions U:

1. $U(x) = -\frac{e^{-\gamma x}}{\gamma}, \quad \gamma > 0.$ 2. $U(x) = \log(x).$

3.
$$U(x) = \frac{x^{\alpha}}{\alpha}, \quad \alpha \in (-\infty, 1) \setminus \{0\}.$$

For each function, make sure to address the following points:

- Find the conjugate function $V(y) = \sup_{x} [U(x) yx].$
- Compute the dual value function $v(y) = E\left[V\left(y\frac{dQ}{dP}\right)\right]$.
- Find $\hat{y}(x)$ satisfying $v'(\hat{y})(x)) = -x$
- Obtain $\hat{X}_T(x)$ using the relation $U'(\hat{X}_T(x)) = \hat{y}(x) \frac{dQ}{dP}$.
- Justify the existence of a portfolio $\hat{H} \in \mathcal{H}$ such that $\hat{X}(x) = x + (\hat{H} \cdot S)_T$.