Assignment 1 Foundations of Mathematical Finance - Winter 2010 Fields Institute

25/01/2010

1. Let (Ω, \mathcal{F}, P) be a finite probability space. Show that $L^0_-(\Omega, \mathcal{F}, P)$ is a close polyhedral cone. Moreover, show that $C = K + L^{\infty}_-$ is a closed convex set, where K denotes the set of attainable claims at price 0.

2. Consider discounted assets $S = (S_t^1, \ldots, S_t^d)_{t=0}^T$ and let $H \in \mathcal{H}$ be a self-financing strategy such that $(H \cdot S)_T \geq 0$ and $P[(H \cdot S)_T > 0] > 0$ (that is, H is an arbitrage in the multi-period market). Show that there exists $1 \leq t \leq T$ and a set $A \in \mathcal{F}_{t-1}$ with P(A) > 0 such that $\mathbf{1}_A H_t \Delta S_t \geq 0$ and $P[\mathbf{1}_A H_t \Delta S_t > 0] > 0$ (that is, H_t is an arbitrage in the single period market (S_{t-1}, S_t)).

3. Show that the set $I(f) := \{ E_Q[f] \mid Q \in \mathcal{M}^e(S) \}$ is a bounded interval in \mathbb{R} .

4. Consider a one-period market model with prices at time t = 0 given by the constants $\hat{S}_0 \in \mathbb{R}^{d+1}$ and prices a time time T = 1 given by the \mathbb{R}^{d+1} -value random variable $\hat{S}_1(\omega)$ where $\omega \in \Omega = \{\omega_1, \ldots, \omega_N\}$. Show that this model is arbitrage-free if and only if there exists a vector $\psi \in \mathbb{R}^N_{++}$ (that is, a vector with strictly positive components) such that

$$\hat{S}_{0}^{j} = \sum_{n=1}^{N} S_{1}^{i}(\omega_{n})\psi_{n}, \qquad j = 0, \dots, d$$

The vector ψ is called the *state-price* density for the model.