
Lectures on the

Foundations of Mathematical Finance

M. R. Grasselli

Fields Institute, Winter 2010

Notes by E. Ha and W. Mnif

The aim of these lectures is to give an introduction to the mathematical foundations of finance,
rather than to mathematical finance per se. The reader is assumed to know the basics of stochastic
differential equations and mathematical finance (at the level of Shreve’s textbooks [5], [6]).

1 No-arbitrage for Finite Probability Spaces

The notion of arbitrage will be one of the main themes of the course.
We will start the course by examining models based on finite probability spaces with discrete

time. By studying this toy model we can introduce the necessary ideas and language of func-
tional analysis at a relatively non-technical level. Later we will study models based on arbitrary
probability spaces with continuous time.

In this lecture we shall follow sections 2.1–2 of Delbaen and Schachermayer [2] very closely.

1.1 Finite Model of a Financial Market ([2], §2.1)

The financial market model that we shall consider here is based on a finite probability space
(Ω,F , P ), where Ω = ω1, . . . , ωN is a finite set, P is a probability measure with P (ω) > 0 for
all ω ∈ Ω, and F is the σ-algebra of all subsets of Ω. In addition, we consider a filtration
F0 ⊂ · · · ⊂ FT = F of sub-σ-algebras of F with F0 = {∅,Ω}.

Definition 1.1.1. Asset prices are given by an R
d+1–valued adapted process Ŝ = (Ŝ0

t , . . . , Ŝ
d
t )

T
t=0.

We will assume that Ŝ0
0 = 1 and Ŝ0

t > 0 for all t = 1, · · · , T .

The requirement of being an adapted process, that is Ŝt is Ft-measurable, simply means that
the prices at t are known at time t, despite being uncertain at any earlier time. The first component
S0
t will play the role of a numeraire, which is a fancy way to call the units used to express the

value of the other assets. In the simplest case we have S0
t ≡ 1 for all t, so we can think of it as a

fixed currency amount, say one Canadian dollar. More generally, S0
t can represent the value of a

bank account accumulating interest as time goes by.

Definition 1.1.2. A trading strategy is an R
d+1–valued predictable process Ĥ = (Ĥ0

t , . . . , Ĥ
d
t )

T
t=1.

The components of a trading strategy Ht are the number of units of an asset being held from
time t− 1 until time t. The holding decision is made at t− 1, which explains why Ht needs to be
predictable, that is Ĥt is Ft−1-measurable.

Given an asset Ŝt and a trading strategy Ĥt, the inner product

V̂t = ĤtŜt :=

d∑

i=0

Ĥi
t Ŝ

i
t (1)

is called the portfolio value at time t.
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Definition 1.1.3. The trading strategy Ĥ is said to be self–financing if

Ĥt+1Ŝt = ĤtŜt, (2)

for every t = 1, . . . , T − 1.

The left–hand side of (2) corresponds the amount of money necessary to form a portfolio to be
held from time t until time t+1 at the market prices prevailing at time t, whereas the right–hand
side is the amount of money obtained from the portfolio held from time t− 1 until time t. In other
words, a trading strategy is self–financing provided there is no injection or withdraw of funds at
any given time.

Given asset prices Ŝt = (Ŝ0
t , . . . , Ŝ

d
t ), let St = (S1

t , . . . , S
d
t ) be the R

d–valued adapted process
of discounted prices with components

Sj
t =

Ŝj
t

Ŝ0
t

, j = 1, . . . , d.

Accordingly, given an R
d+1–valued trading strategy Ĥt = (Ĥ0

t , . . . , Ĥ
d
t ), let Ht = (H1

t , . . . , H
d
t ) be

the R
d-valued trading strategy with components

Hj
t = Ĥj

t , j = 1, . . . , d.

Notice that, for every predictable R
d–valued process Ht we can construct a unique R

d+1–valued
self–financing trading strategy Ĥt such that Ĥj

t = Hj
t for all j = 1, . . . , d and all t = 1, . . . , T

simply by setting H0
1 = 0 and finding H0

t inductively for j = 2, . . . , T using (2). Together with the
next proposition, this construction shows that, as long as we are interested in discounted portfolio
values only, there is no loss of information when we consider the restricted R

d–valued strategy Ht

instead of the R
d+1–value strategy Ĥt.

Proposition 1.1.4. Let Ĥt be the unique R
d+1–value self–financing trading strategy associated

with an arbitrary R
d–value strategy Ht through the construction above. Then the discounted

portfolio value Vt = V̂t/S
0
t is independent of the scalar process Ĥ0

t .

Proof. Since Ŝ0
0 = 1 and H0

1 = 0, we have that

V0 = V̂0 = Ĥ1
1 Ŝ

1
1 + · · ·+ Ĥd

1 Ŝ
d
1 .

Using the self-financing condition ĤtŜt = Ĥt+1Ŝt, we find that the change in Vt is

∆Vt+1 := Vt+1 − Vt

= V̂t+1/Ŝ
0
t+1 − V̂t/Ŝ

0
t

= Ĥt+1Ŝt+1/Ŝ
0
t+1 − Ĥt+1Ŝt/Ŝ

0
t

= Ĥ0
t+1(1− 1) +

d∑

j=1

Ĥj
t+1(Ŝ

j
t+1/Ŝ

0
t+1 − Ŝj

t /Ŝ
0
t )

=

d∑

j=1

Hj
t+1∆S

j
t+1

= Ht+1∆St+1.

Thus Vt = V0 +H1∆S1 + · · ·+Ht∆St, which is manifestly independent of Ĥ0
t .

In particular, using the following standard notation for stochastic integrals (see [3])

(H · S)T = (H · S)Tt=1 :=

T∑

t=1

Ht∆St

we have that
VT = V0 + (H · S)T . (3)
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1.2 No Arbitrage and the FTAP

Let H be the space of predictable R
d-valued processes Ht for a financial market with discounted

asset prices St. Let L
0(Ω,F , P ) denote the space of all measurable functions on Ω, which for finite

sample spaces is canonically isomorphic to R
N . Similarly, let L∞(Ω,F , P ) = R

N denote the space
of bounded measurable functions on Ω.

Definition 1.2.1. The subspace K ⊂ L0(Ω,F , P ) defined by

K = {(H · S)T | H ∈ H},

is called the set of attainable claims at price 0, whereas the convex cone C ⊂ L∞(Ω,F , P ) defined
by

C = {g ∈ L∞(Ω,F , P ) | g ≤ f for some f ∈ K }

is called the set of super-replicable claims at price 0. (We say “super-replicable” since such claims
are dominated by attainable claims — the terminology is not ideal!) For a ∈ R, the setsKa = a+K
and Ca = a+ C are respectively the sets of attainable and super–replicable claims at price a.

Remark 1.2.2. Observe that we can write C = K + L0
−. It then follows that C is a closed set,

since K is closed (being a linear subspace of RN ) and L0
− is a closed polyhedral cone. This is one

of the many instances where working with finite–dimensional vector spaces simplifies the analysis
tremendously.

Definition 1.2.3. A financial market S satisfies the no arbitrage condition (NA) if

K ∩ L0
+(Ω,F , P ) = {0}.

or equivalently
C ∩ L∞

+ (Ω,F , P ) = {0}.

Because this is the central concept in this notes, it deserves further explanation. In view of
(3), the set K consists of random variables that coincide with the discounted terminal values of
self–financing trading strategies starting at zero initial value. On the other hand, L0

+ is the set of
non–negative vectors in R

N . Thus, an arbitrage is a self–financing trading strategy starting with
zero initial value and with terminal value given by a random variable that is non–negative and not
identically equal to zero. That, an arbitrage is a strategy that starts at zero, never loses money,
and has a strictly positive probability of making money.

Proposition 1.2.4. The condition (NA) implies that C ∩ (−C) = K.

Proof. ClearlyK ⊂ C∩(−C). For the reverse inclusion, consider an element g ∈ C∩(−C). It then
follows from Remark 1.2.2 that we can write g = f1 − h1 = f2 + h2 for some elements f1, f2 ∈ K
and h1, h2 ∈ L0

+. But then f1 − f2 = h1 + h2 is in K ∩L0
+, which is 0 by (NA). Thus h1 = h2 = 0

and so g ∈ K.

Definition 1.2.5. A probability measure Q on (Ω,F) is an equivalent martingale measure (EMM)
for S if Q ∼ P (that is, Q[ωn] > 0 for all n) and S is a Q-martingale, that is

EQ[St+1 | Ft] = St, t = 0, 1, . . . , T − 1.

The set of EMM’s for S is denoted Me(S).

Lemma 1.2.6. For a probability measure Q on (Ω,F), the following are equivalent:

(i) S is a Q–martingale.

(ii) EQ[f ] = 0 for all f ∈ K.

(iii) EQ[g] ≤ 0 for all g ∈ C.
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Proof. We shall prove only that (i) ⇔ (ii), since (ii) ⇔ (iii) is obvious. First observe that for a
Q–martingale S and a predictable trading strategy Ht we have

EQ[Ht∆St|Ft−1] = EQ[

d∑

j=1

Hj
t (S

j
t − Sj

t−1|Ft−1]

=

d∑

j=1

Hj
tEQ[S

j
t − Sj

t−1|Ft−1] = 0.

But this shows that (H · S)t is also a Q–martingale, since

EQ[(H · S)t|Ft−1] = EQ[

t−1∑

s=1

Hs∆Ss +Ht∆St|Ft−1] = (H · S)t−1.

In particular, EQ[(H · S)T ] = (H · S)0 = 0, which shows that (1) ⇒ (2). Conversely, let A be
an arbitrary Ft−1–measurable set and consider the strategy H(ω, s) = 1A(ω)1(t−1,t](s). Then
(H · S)T = 1A(St − St−1) and (ii) implies that

EQ[1A(St − St−1)] = 0

which is equivalent to
EQ[St|Ft−1] = St−1,

which in turn means that S is a Q–martingale.

We are now in a position to prove the following theorem, known as the Fundamental Theorem
of Asset Pricing.

Theorem 1.2.7 (FTAP). For a financial market modeled on a finite probability space (Ω,F , P ;Ft),
the following are equivalent:

1. S satisfies (NA).

2. Me(S) 6= ∅.

Proof. (2) ⇒ (1) (easy part): Suppose Q ∈ Me(S). By Lemma 1.2.6, EQ[g] ≤ 0 for all g ∈ C. On
the other hand, if there were a non-zero element g ∈ C ∩L∞

+ , then we would have EQ[g] > 0, since
Q ∼ P . So necessarily S must satisfy (NA).

(1) ⇒ (2) (interesting part): By the condition (NA), K ∩ L∞
+ = {0}, and so K and L∞

+ are
disjoint convex sets. Let B = {

∑
n µn1ωn

| µn ≥ 0,
∑

n µn = 1}. Then B ⊂ L∞
+ is a convex

compact set which is disjoint from K. Now, by the separating hyperplane theorem (take the
proof in [4, Theorem V.4] and eliminate the use of Hahn-Banach), there is a linear functional
Q ∈ (L∞)

∗
= L1 separating B and K. This means that we can find numbers α < β such that

Q[f ] ≤ α < β ≤ Q[g], for all f ∈ K, g ∈ B.

Since K is linear, we have α ≥ 0, and without loss of generality we can take it to be 0, which
implies that β > 0. Let en be the n-th canonical basis vector of RN . Since en ∈ B we have that
Q(en) > 0. Moreover, let I = (1, . . . , 1). Then by linearity Q[I] > 0. Normalizing so that Q[I] = 1,
we can associate Q with a probability measure equivalent to P satisfying property (ii) of Lemma
1.2.6. Then Q ∈ Me(S).

Corollary 1.2.8. Let S satisfy (NA) and let f = a+ (H · S)T for some H ∈ H and a ∈ R. Then
a and H are uniquely determined by this expression and, moreover, a = EQ[f ] and a+ (H · S)t =
EQ[f | Ft].
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Proof. For uniqueness, suppose that f = a1 + (H1 · S)T = a2 + (H2 · S)T , and say a1 > a2. Then(
(H2 −H1) · S

)
T
= a1 − a2 > 0 is an arbitrage. But since we are assuming that S satisfy (NA),

we must have a1 = a2. Next suppose that H1 6= H2 and define

A = {ω | (H1 · S)t − (H2 · S)t > 0},

for some t. Then H := (H1,t −H2,t)1A1(0,t] is an arbitrage trading strategy because (H · S)T = 0
outside A, while (H · S)T = (H1 · S)t − (H2 · S)t > 0 on A. But again, since we are assuming that
S satisfy (NA), we must have H1 = H2.

The last part follows from the fact (already established) the stochastic integral (H · S)t is a
Q-martingale.

1.2.1 Convex cones and polar sets

Using a standard definition in convex analysis, let the polar set of our cone C of super-replicable
claims be given by

C◦ = {f ∈ L1(Ω,F , P ) | E[fg] ≤ 0, ∀f ∈ C }.

According to the bipolar theorem (for a very general version, see [1]), the bipolar set C◦◦ := (C◦)◦

coincides with the closed convex hull of C. But by virtue of Remark 1.2.2, we know that C is
already a closed set, from which we conclude that C◦◦ = C.

Now denote byMaS the set absolutely continuous martingale measures for S, that is probability
measures Q which are absolutely continuous with respect to P and such that S is a Q–martingale.
Consider the cone generated by MaS, that is,

cone(MaS) :=

{
f = λ

dQ

dP
, λ ≥ 0, Q ∈ MaS

}

The next proposition establishes a perfect polar relation between C and MaS.

Proposition 1.2.9. Suppose S satisfies (NA). Then C◦ = coneMa(S), and Me(S) is dense
in Ma(S).

Proof. Since S satisfies (NA), Me(S) 6= ∅ by the FTAP. Pick any Q∗ ∈ Me(S). Then for all
Q ∈ Ma(S) and 0 < µ ≤ 1, we have µQ∗ + (1 − µ)Q ∈ Me(S), since (1 − µ)Q is absolutely
continuous with respect to Me(S). In particular, Ma(S) is arbitrarily close to Me(S), which
proves the density statement.

Now let Q ∈ Ma(S) and let λ > 0. Then by Lemma 1.2.6, we have

E

[
λ
Q

dP
g

]
= λEQ[g] ≤ 0, ∀g ∈ C.

This shows that cone(Ma(S)) ⊂ C◦. For the converse, observe first that L∞
− ⊂ C because 0 is

achievable, which implies that C◦ ⊂ L1
+. This means that f ∈ C◦ ⊂ L1

+ can be written as f = λdQ
dP

for some λ ≥ 0 and some probability measure Q. But then

0 ≥ E[fg] = λEQ[g], ∀g ∈ C

which means that Q ∈ Ma(S), by Lemma 1.2.6. Thus C◦ ⊂ cone(Ma(S)).

In view of Lemma 1.2.6, another way to formulate the proposition is as follows.

Proposition 1.2.10. For all g ∈ L∞(Ω,F , P ), the following are equivalent:

1. g ∈ C.

2. EQ[g] ≤ 0 for all Q ∈ Ma(S).

3. EQ[g] ≤ 0 for all Q ∈ Me(S).
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2 Utility Maximization in Finite Probability Spaces

Consider
U : R → R ∪ {−∞},

satisfying

(i) U is increasing on R;

(ii) U is continuous on dom(U) = {x/U(x) > −∞};

(iii) U is strictly concave on the interior of dom(U);

(iv) U ′(∞) = 0.

Regarding negative wealth, we assume:

• Case 1 X U(x) = −∞, x < 0;

X U(x) > −∞, x > 0;

X U ′(0) = +∞;

X Examples: U(x) = log(x), U(x) = xp

p
, p ∈ (−∞, 1)\{0}.

• Case 2 X U(x) > −∞, x ∈ R;

X U ′(−∞) = +∞;

X Example: U(x) = − e−γx

γ
, γ > 0.

The utility maximization we are interested in is:

u(x) := sup
H∈H

E[U(x+ (H · S)T )], x ∈ dom(U) (4)

Before tackling this problem, it is convenient to define the conjugate function V by

V (y) = sup
x∈R

(U(x) − xy), y > 0,

which can be seen as the Legendre transform of −U(−x). It follows that V satisfies the following
properties:

(i) V : R → R is finite valued;

(ii) V is differentiable and strictly convex on (0,+∞);

(iii) V ′(0) = −∞.

Moreover,

• Case 1 V (∞) = limx 7→0 U(x) and V ′(∞) = 0;

• Case 2 V (∞) = +∞ and V ′(∞) = +∞.

In addition, U(x) = infy>0[V (y) + yx] and −V ′(U ′(x)) = x. In other words, I := (U ′)−1 = −V ′.
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2.1 The complete market case

Assume that Me(S) = {Q} and consider the Arrow-Debreux securities 1{ωn} so that EQ[1{ωn}] =
Q(ωn) := qn and because the market is complete, 1{ωn} = qn + (Hn · S) for some Hn ∈ H. It
follows from the previous lemmas that a random variable f ∈ L∞ satisfies f ≤ x + (H · S)T for
some H ∈ H iff EQ(f) ≤ x. Therefore, in this finite, complete case, we can rewrite (4) as the
following concave optimization with a linear constraint:

u(x) = sup
f ∈ R

N

EQ[f ] ≤ x

E[U(f)]

= sup
(f1, ..., fn)∑N
n=1

fnqn ≤ x

N∑

n=1

pnU(fn). (5)

To solve this problem, let us introduce the Lagrangian:

L(f1, ..., fn, y) =

N∑

n=1

pnU(fn)− y(

N∑

n=1

fnqn − x)

=

N∑

n=1

pn(U(fn)− y
qn
pn
fn) + xy.

It follows from the saddle point theorem that a solution to (5) is given by a saddle point (f̂1, ..., f̂N , ŷ)
of L, that is,

L(f1, ..., fN , ŷ) ≤ L(f̂1, ..., f̂N , ŷ) ≤ (f̂1, ..., f̂N , y), ∀f ∈ R
N , y > 0.

To see this, define

φ(f1, .., fN) = inf
y≥0

L(f1, ..., fN , y), fn ∈ dom(U)

and

ψ(y) = inf
f∈RN

L(f1, ..., fN , y), y ≥ 0.

Now notice that if f = (f1, .., fN ) satisfies EQ[f ] ≤ x, then φ(f1, .., fN ) = L(f1, ..., fN , 0) =∑N
n=1 pnU(fn). Conversely, if EQ(f) > x, then φ(f1, .., fN ) = −∞. Therefore,

sup
f∈RN

φ(f1, .., fN ) = sup
f ∈ R

N

EQ[f ] ≤ x

N∑

n=1

pnU(fn) = u(x).

Moreover, observe that for fixed y > 0, the optimization over R
N appearing in the definition of

ψ(y) splits into N separate one dimensional optimization problems. Explicitly, using the definition
of V , we see that:

ψ(y) =

N∑

n=1

pnV (y
qn
pn

) + xy

= E[V (y
dQ

dP
)] + xy

:= v(y) + xy.

Observe that v(y) inherits all the proprieties of V . In particular, for x ∈ dom(U), there exists a
unique ŷ = ŷ(x) > 0 such that v′(ŷ(x)) = −x, which is therefore the unique optimizer for ψ(y).
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Fixing ŷ(x), we see that the function (f1, .., fN ) 7→ L(f1, .., fN , ŷ) achieves its maximum at

(f̂1, ..., f̂N) satisfying U ′(f̂n) = ŷ(x) qn
pn

⇔ f̂n = I(ŷ(x) qn
pn

) which implies that

inf
y>0

ψ(y) = inf
y>0

(v(y) + xy)

= v(ŷ(x)) + xŷ(x)

=

N∑

n=1

pnV (ŷ(x)) + xŷ(x)

=

N∑

n=1

pn(U(f̂n)− xŷ(x)
qn
pn

) + xŷ(x)

= L(f̂1, ..., f̂N , ŷ).

Notice that f̂n is in the interior of dom(U), which means that L is continuously differentiable at

(f̂1, ..., f̂N , ŷ) and
∂L
∂y

|
f̂ ,ŷ

= 0 so that the constraint is binding, that is
∑N

n=1 qnf̂n = x.

Finally, it is clear that
∑N

n=1 pnU(f̂n) ≤ u(x). Conversely, for all (f1, .., fn) satisfying EQ[f ] ≤
x, we have

N∑

n=1

pnU(fn) ≤ L(f1, ..., fN , ŷ) ≤ L(f̂1, ..., f̂N , ŷ) =

N∑

n=1

pnU(f̂n).

Therefore, u(x) = v(ŷ(x)) + xŷ(x) ⇒ u′ = ŷ(x). So that u inherits all the properties from U .

Theorem 2.1.1. For a finite complete case, define u(x) = supH∈HE[U(XT )], x ∈ dom(u),

XT = x+ (H · S)T , and v(x) = E[V (y dQ
dP

)], y > 0. Then,

(i) u and v are conjugates and inherit the proprieties of U and V ;

(ii) X̂T (ωn) = I(y dQ
dP

) (or equivalent U ′(X̂T (ωn)) = y dQ
dP

(ωn)) is optimal wealth, where y satisfies
u′(x) = y (or equivalently v′(y) = −x).

Notes:

(1) U ′(X̂T (ωn)) = y qn
pn

, where U ′ represents the marginal utility, X̂T (ωn) is the optimal wealth,
and qn is the price of the Arrow-Debrew security 1{ωn} with a probability of its success pn.

(2) Observe that u′(x) = y and U ′(X̂T ) = y dQ
dP

implies that u′(x) = E[U ′(X̂T )].

Consider an agent with x + ǫ as an initial endowment who uses x to finance X̂x
T = x + (Ĥ · S)T

for some Ĥ ∈ H and ǫ to buy the numeraire. Thereby ending with X̂T + ǫ at T . Comparing this
by the optimal wealth X̂x+ǫ

T gives:

lim
ǫ→0+

u(x+ ǫ)− u(x)

ǫ
= lim

ǫ→0+

E[U ′(X̂x+ǫ
T )− U ′(X̂x

T )]

ǫ

≥ lim
ǫ→0+

E[U ′(X̂x
T + ǫ)− U ′(X̂x

T )]

ǫ

= E[U ′(X̂x
T )].

The argument with ǫ < 0 implies that u′(x) = E[U ′(X̂x
T )] ⇒ the agent is indifferent. Similarly, we

can prove that xu′(x) = E[X̂x
TU

′(X̂x
T )].
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3 The Dalang–Morton–Willinger Theorem

3.1 The closedness of C

Let X = ∆S1 = S1 − S0 and its corresponding subspaces:

EX = {H : Ω → R
d,F0-measurable and X ·H = 0 a.s} and

HX = {f : Ω → R
d,F0-measurable and Pf = f},

where P = I−P ′ and P ′ being the projection associated to EX . Observe thatH ·X = H ·(S1−S0) =
(H.S)1. Define:

I : L0(Ω,F0, P ;R
d) −→ L0(Ω,F0, P )

H 7−→ (H · S)1

Definition 3.1.1. We say H is a canonical form for S if H ∈ HX , where X = ∆S.

Lemma 3.1.2. The kernel of I is EX . The restriction of I to HX is injective, linear and has full
range.

Proof. The first statement follows from the definition of EX . For the second, let H and H ′ ∈ HX

with I(H) = I(H ′). Then X · (H −H ′) = 0 a.s ⇒ (H −H ′) ∈ EX . But (H −H ′) ∈ HX , then
(H −H ′) ∈ EX ∩HX = {0} ⇒ H = H ′ a.s.

Proposition 3.1.3. Let (St)
1
t=0 be adapted to (Ω, (Ft)

1
t=0, P ) and let (Hn)∞n=1 be a sequence in

L0(Ω,F0, P ;R
d) in canonical form. Then:

(i) (Hn)∞n=1 is bounded iff (Hn ·∆S)∞n=1 is.

(ii) (Hn)∞n=1 converges a.s iff (Hn ·∆S)∞n=1 does.

If, in addition, S satisfies (NA), then

(i’) (Hn)∞n=1 is bounded iff ((Hn ·∆S)−)
∞
n=1 is.

(ii’) (Hn)∞n=1 converges to zero a.s iff ((Hn ·∆S)−)∞n=1 does.

Proof. We consider just the ”if” part of each statement.
(i) and (i’): Suppose that (Hn)∞n=1 is not bounded. Let K = R

d∪{∞} and take x0 = ∞ ∈ K.

Since (Hn)∞n=1 diverges to ∞ on a set B of positive measure, there exists a subsequence (Lk)∞k=1 =
(Hτk)∞k=1 such that (Lk(ω))∞k=1 diverges to ∞ on B.

Now put L̂k = Lk

|Lk|
IB∩{|Lk|≥1} so that |L̂k(ω)| = 1 for ω ∈ B and k sufficiently large.

By passing to a subsequence again, we may suppose that (L̂k)∞k=1 converges to L̂, which is in

canonical form and satisfies |L̂| = 1 on B. Therefore we assume that (Hn · ∆S)∞n=1 is bounded.

Then (L̂n · ∆S)∞n=1 necessarily goes to zero a.s. But then L̂ · ∆S = limk→∞ L̂ · ∆S = 0 a.s and

since L̂ is in canonical form, this implies that L̂ = 0 a.s (contradiction).
In addition, suppose that S satisfies (NA). Then if we assume that ((Hn ·∆S)−)∞n=1 is bounded.

So, L̂ ·∆S− = limk→∞ L̂k ·∆S− = 0 a.s. (NA) implies L̂ ·∆S− = 0 a.s ⇒ L̂ = 0 a.s (contradiction).
(ii) and (ii’): Suppose that (Hn)∞n=1 does not converge a.s, but (Hn · ∆S)∞n=1 does. Then,

(Hn ·∆S)∞n=1 is bounded a.s. Therefore (Hn)n=1∞ is also bounded a.s from the previous item.
Using again the compact set K = R

d ∪ {∞}; we can find a subsequence (Hτk)∞k=1 comparing
to some H0 ∈ HX . Since (Hn)∞n=1 itself does not converge, we can find another subsequence

(Hσk)∞k=1 converging to some Ĥ0 with P [H0 6= Ĥ0] > 0. But since (Hn · ∆S)∞n=1 converge, we

must have (H0 − Ĥ0) ·∆S = limk→∞Hτk ·∆S − limk→∞Hσk ·∆S = 0 a.s. Therefore, H0 = Ĥ0.
Assume (NA) and also that (Hn)∞n=1 does not converge to zero but ((Hn ·∆S)−)∞n=1 does. We

can again find a convergent subsequence (Hσk)∞k=1 converging to some Ĥ0 such that P (Ĥ0 6= 0) >

0. But Ĥ0 ·∆S− = limk→∞Hσk ·∆S− = 0 a.s. which, together with (NA), means that Ĥ0 = 0
a.s.
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Theorem 3.1.4. Let (St)
1
t=0 be a one step process.

(i) K = {H ·∆S/H ∈ L0(Ω,F0, P ;R
d)} is closed in L0(Ω,F1, P ).

(ii) If S satisfies (NA), then C=K-L0
+(Ω,F1, P ) is also closed.

Proof. (i) let (fn) = (Hn ·∆S)∞n=1 be a sequence in K converging to f0 ∈ L0(Ω,F1, P ), with each
Hn in canonical form. By passing to a subsequence, we can suppose that (fn)

∞
n=1 converges to f0

a.s. Then, (Hn)∞n=1 converges a.s to some H0 ∈ L0(Ω,F0, P ;R
d) so that f0 = H0 ·∆S ∈ K.

(ii) Let fn = gn − hn be a sequence in C converging to f0 ∈ L0(Ω,F1, P ), where gn = Hn ·∆S

for Hn in canonical form and hn ∈ L0
+(Ω,F1, P ).

Again by passing to a subsequence, we can assume that (fn) converges to f0 a.s. Since gn ≤ fn
we have that gn− is bounded. Because of (NA), we then have that (Hn)∞n=1 is also bounded a.s.
By passing to a convergent subsequence (Hτk)∞k=1, we may suppose that gτk = Hτk ·∆S converges
a.s to g0 = H0 · ∆S, H0 = L0(Ω,F0, P ;R

d). Since (fτk) still converge a.s to f0, we have that
hτk = gτk − fτk converges a.s to h0 ≥ 0. Thus f0 = g0 − h0 ∈ C.

3.2 The DMW Theorem for T = 1

Theorem 3.2.1. Let (St)
1
t=0 be a one-step price process adapted to (Ω, (Ft)

1
t=0, P ) satisfying the

(NA) condition. Then, ∃ an equivalent probability measure Q such that:

(i) S0, S1 ∈ L1(Ω,F1, Q;Rd);

(ii) EQ[S1 | F0] = S0;

(iii) dQ
dP

is bounded.

Proof. First construct P1 given by:

dP1

dP
= ce−‖S1‖−‖S0‖,

so that P1 ∼ P , dP1

dP
is bounded, S0, S1 ∈ L1(Ω,F1, P1;R

d). Next, take C1 = C∩L1(Ω,F1, P1;R
d).

Then it is easy to show that C1 is closed in L1(Ω,F1, P1;R
d), because C is closed in L0(Ω,F1, P ;R

d) =
L0(Ω,F1, P1;R

d). Moreover, C1 is a convex cone because C is a convex cone and by (NA),
C1 ∩ L1

+(Ω,F1, P1;R
d) = {0}. It then follows from the Hahn-Banach Theorem (see the gen-

eral version next lecture!) that we can find an equivalent probability measure Q such that dQ
dP1

is

bounded and EQ[f ] ≤ 0 for all f ∈ C1. We then have that S0, S1 ∈ L1(Ω,F1, Q;Rd) and that
dQ
dP

= dQ
dP1

dP1

dP
is bounded.

For the martingale property, observe that for each component j = i, .., d and each A ∈ F0, we
have that IA(S

j
1 − Sj

0) ∈ C1 and −IA(S
j
1 − Sj

0) ∈ C1. Therefore, EQ[IA(S
j
1 − Sj

0) | F0] = 0 and so
EQ[IA(S1 − S0) | F0] = 0.

3.3 Proof of the DMW theorem for T ≥ 1

Let us use induction on the number of intervals necessary to reach T .
For T = 1, the result holds.
Suppose that it holds for n = T − 1, that is, consider t = 1, ..., T and the process (St)

T
t=1

adapted to (Ω, (Ft)
T
t=1, P ;R

d) for which there exists on equivalence probability measure Q1 on FT

such that:

(i) dQ1

dP
is bounded;

(ii) S1, ..., ST ∈ L1(Ω,FT , Q
1;Rd);
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(iii) (St)
T
t=1 is a Q1-martingale.

Using the one-step DMW Theorem for (St)
1
t=1 and (Ω, (Ft)

1
t=0, Q

1;Rd), we can find a bounded
function f1 such that f1 is F1-measurable, f1 > 0, EQ1 [f1] = 1, EQ1 [| S1 | f1] < ∞, EQ1 [| S0 |
f1] <∞ and for all A ∈ F0: ∫

A

S0f1dQ
1 =

∫

A

S1f1dQ
1.

Now define Q on FT by Q[A] =
∫
A
f1dQ

1, A ∈ FT . That is,
dQ
dP

= f1
dQ1

dP
is bounded and dQ

dP
> 0.

So Q ∼ P .
Moreover, for t = 0, ..., T , we have

∫
Ω |St|dQ =

∫
Ω |St|f1dQ1 <∞.

Finally, for the martingale property, observe that for all A ∈ F0, we have:
∫

A

S0dQ =

∫

A

S0f1dQ
1 =

∫

A

S1f1dQ
1 =

∫

A

S1dQ.

So that EQ[S1 | F0] = S0, for t ≥ 1, let A ∈ Ft, then
∫

A

StdQ =

∫

A

Stf1dQ
1

=

∫

A

St+1f1dQ
1

=

∫

A

St+1dQ.

So, EQ[St+1 | Ft] = St.

4 No-arbitrage in continuous time

4.1 Stochastic integrals for semimartingales

Recall that we have defined the stochastic integral H 7→ (H.W )t pathwise for bounded simples
strategies and used the isometry

‖ H ‖L2(Ω×R+,P,P⊗λ)=‖ (H.S)∞ ‖L2(Ω,F,P )

to extend it by continuity to the entire space L2(Ω×R+,P , P ⊗λ), in such way that (H.W )t is an
L2-bounded martingale, that is, supt ‖ (H.W )t ‖L2(Ω,F,P )< ∞. When H is locally in L2(P ⊗ λ)

(which is equivalent to
∫ t

0 H
2
sds < ∞), the same construction yields a local martingale (H.W )t

which is locally L2−bounded.
Recall also that for an L2−bounded martingale St, we define the quadratic variation measure

on P as:

d[S](]|τ, σ]|) := E(|Sσ − Sτ |
2)

and the following isometry holds for bounded simple integrand H :

‖ H ‖L2(Ω×R+,P,d[S])=‖ (H.S)∞ ‖L2(Ω,F,P )

we can then extend H 7→ (H.S)t to the entire space L2(Ω × R+,P , d[S]) by continuity in such a
way that (H.S)t is also an L2 bounded martingale. We can use again localization to extend this
to a locally L2 integrand H and locally L2 bounded local martingale. Since every continuous local
martingale S is automatically locally L2-bounded, this is the right degree of generality for this
class. To include integrators with jumps, we will extend the theory even beyond local martingales.

Suppose first that S is a càdlàg adapted process of bounded variation, that is,

|S|t := sup
0≤t0≤t1≤...≤tn≤t

n∑

i=0

|Sti+1
− Sti | <∞ a.s for all t <∞.
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Then for almost all ω ∈ Ω, the path (St(ω))0≤t<∞ is of bounded variation on compact subsets of

R+ by dS(ω)(]a, b]) = Sb(ω)−Sa(ω). So that the stochastic integral (H.S)t(ω) =
∫ t

0 Hu(ω)dSu(ω)
is well defined as a Lebesgue-Sieltjes integral for each process H such that (Hu(ω))0≤u≤t is dS(ω)-
integrable. We have then led to investigate process of the form

S =M +A (6)

where M is a bounded martingale and A is locally of bounded variation.
For that, let us define S as the class of bounded simple integrands H with the topology of

uniform convergence which is given by the norm:

‖ H ‖∞= sup{‖ Ht ‖L∞(Ω,Ft,P ) \t ∈ R+} (7)

For this class, we can define the stochastic integral as before:

I(H) = (H.S)∞ =
n∑

i=1

fi−1(Sτi − Sτi−1
) (8)

for any càdlàg process S.

Definition 4.1.1. S is a strict semi-martingale if the map:

I : S → L0(ω,F∞, P ) (9)

H 7→ I(H) = (H · S)∞ (10)

is continuous for the topologies of ‖‖∞ on S and convergence in probability on L0.

(i) S is a semi-martingale if it is locally a strict semi-martingale.

Theorem 4.1.2 (Bicheteler-Dellacherie). S is a semi-martingale in the sense of the definition
above if and only if it can be decomposed as S =M +A as in (6).

We say that S is a special semi-martingale if in addition the process A is predictable.

It is relatively easy to show that (H.S)t is a semi-martingale, even when H is only locally in
S. To extend for H beyond L∞ -bounded simple, consider the semi-martingale topology induced
on the set of one-dimensional semi-martingale by the distance:

D[S] =

∞∑

n=1

2−nsup{E[| (K − S)n |] ∧ 1/K ≤ 1}

where K is a predictable process. This means that Sn → 0 iff (K ·Sn)t → 0 uniformly in t and K.
One can show that this space is complete. We then say that an R

d-valued process H is S-integrable
(L(S)) w.r.t a semi-martingale S if (H1H≤n · S)∞n=1 is a cauchy sequence. We define (H · S)t as
the limit of the sequence.

Notice (H ·S)t is a semi-martingale and can be decomposed to a local martingale M̃t+ Ãt that
are different from (H ·M)t and (H · .A)t resp.

Remark 4.1.3. One can construct examples where S =M +A is a special semi-martingale, H is
S−integral, so that (H · S)t exists, but (H ·A) does not exist.

Lemma 4.1.4. Let S be a special semi-martingale with decomposition S = M + A and H be
an R

d−valued predictable process. If the stochastic integral (H · S) is itself special, then (H · A)
exists as a Lebesgue-Stieltjes integral.

One can find examples of a martingale Mt and an M−integrable process H such that (H ·M)t
is not a local martingale.
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Lemma 4.1.5. LetM be anR
d−valued local martingale and letH be anR

d−valuedM−integarble
process. Then (H ·M)t is a local martingale if there exists a sequence of stopping times τn ր ∞
and integrable function ϕn ∈ L1 with ϕn ≤ 0 s.t < H,△M >τ

m≥ ϕn.

Theorem 4.1.6. If S is a special semi-martingale with canonical decomposition S =M +A and
if H is S−integrable then (H.S) is special martingale iff:

i (H ·M) is defined as an integral in local martingale sense

ii (H · A) is defined as a Lesbegue-Stieltjes integral.

Proof. Let H be S−integrable. If (H · S) is special then (H · A) exists as a L-S integrable by
Lemma 1, which gives (ii). Moreover, (H · S) is a special, it must be locally integrable, that is,
there is a sequence τn → ∞ and ϕn ∈ L1 s.t (H · S)τn ≥ ϕn. Now let σn be stopping times such
that (

∫ σn

0 | Hs | dAs) ∈ L1 (which must exist since (H ·A) is a regular L-S integral). Then for each

n, (H ·M)τn∧σn ≥ ϕn −
∫ σn

0 | Hs | dAs and Lemma 2 shows that (H ·M) is a local martingale.
Conversely, if (i) and (ii) hold, then (H · S) is the sum of a local martingale and a predictable
bounded variation process (H ·A) and therefore special.
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