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Conditional Expectation

If F is a sigma-algebra and X is a random variable
which is F-measurable, we write this as X ∈ F .

If X ∈ F and if G ⊆ F then we write E [X| G] for
the conditional expectation of X given the information
contained in G. Sometimes we use the notation EG [X].

The following proposition contains everything that we
will need to know about conditional expectations within
this course.
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Main Results

Proposition 1: Assume that X ∈ F, and that G ⊆ F .
Then the following hold.

• The random variable E [X| G] is completely determined by

the information in G so we have

E [X| G] ∈ G

• If we have Y ∈ G then Y is completely determined by G so

we have

E [XY | G] = Y E [X| G]

In particular we have

E [Y | G] = Y

• If H ⊆ G then we have the “law of iterated expectations”

E [E [X| G]|H] = E [X|H]

• In particular we have

E [X] = E [E [X| G]]
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Absolute Continuity

Definition: Given two probability measures P and Q
on F we say that Q is absolutely continuous w.r.t.
P on F if, for all A ∈ F , we have

P (A) = 0 ⇒ Q(A) = 0

We write this as
Q << P.

If Q << P and P << Q then we say that P and Q
are equivalent and write

Q ∼ P
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Equivalent measures

It is easy to see that P and Q are equivalent if and
only if

P (A) = 0 ⇔ Q(A) = 0

or, equivalently,

P (A) = 1 ⇔ Q(A) = 1

Two equivalent measures thus agree on all certain
events and on all impossible events, but can disagree
on all other events.

Simple examples:

• All non degenerate Gaussian distributions on R are
equivalent.

• If P is Gaussian on R and Q is exponential then
Q << P but not the other way around.
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Absolute Continuity ct’d

Consider a given probability measure P and a random
variable L ≥ 0 with EP [L] = 1. Now define Q by

Q(A) =
∫

A

LdP

then it is easy to see that Q is a probability measure
and that Q << P .

A natural question is now if all measures Q << P
are obtained in this way. The answer is yes, and the
precise (quite deep) result is as follows.
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The Radon Nikodym Theorem

Consider two probability measures P and Q on (Ω,F),
and assume that Q << P on F . Then there exists a
unique random variable L with the following properties

1. Q(A) =
∫

A
LdP, ∀A ∈ F

2. L ≥ 0, P − a.s.

3. EP [L] = 1,

4. L ∈ F

The random variable L is denoted as

L =
dQ

dP
, on F

and it is called the Radon-Nikodym derivative of Q
w.r.t. P on F , or the likelihood ratio between Q and
P on F .
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A simple example

The Radon-Nikodym derivative L is intuitively the local
scale factor between P and Q. If the sample space Ω
is finite so Ω = {ω1, . . . , ωn} then P is determined by
the probabilities p1, . . . , pn where

pi = P (ωi) i = 1, . . . , n

Now consider a measure Q with probabilities

qi = Q(ωi) i = 1, . . . , n

If Q << P this simply says that

pi = 0 ⇒ qi = 0

and it is easy to see that the Radon-Nikodym derivative
L = dQ/dP is given by

L(ωi) =
qi

pi
i = 1, . . . , n
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If pi = 0 then we also have qi = 0 and we can define
the ratio qi/pi arbitrarily.

If p1, . . . , pn as well as q1, . . . , qn are all positive, then
we see that Q ∼ P and in fact

dP

dQ
=

1
L

=
(

dQ

dP

)−1

as could be expected.
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Computing expected values

A main use of Radon-Nikodym derivatives is for the
computation of expected values.

Suppose therefore that Q << P on F and that X is
a random variable with X ∈ F . With L = dQ/dP on
F then have the following result.

Proposition 3: With notation as above we have

EQ [X] = EP [L ·X]
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The Abstract Bayes’ Formula

We can also use Radon-Nikodym derivatives in order to
compute conditional expectations. The result, known
as the abstract Bayes’ Formula, is as follows.

Theorem 4: Consider two measures P and Q with
Q << P on F and with

LF =
dQ

dP
on F

Assume that G ⊆ F and let X be a random variable
with X ∈ F . Then the following holds

EQ [X| G] =
EP

[
LFX

∣∣G]
EP [LF | G]
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Dependence of the σ-algebra

Suppose that we have Q << P on F with

LF =
dQ

dP
on F

Now consider smaller σ-algebra G ⊆ F . Our problem
is to find the R-N derivative

LG =
dQ

dP
on G

We recall that LG is characterized by the following
properties

1. Q(A) = EP
[
LG · IA

]
∀A ∈ G

2. LG ≥ 0

3. EP
[
LG

]
= 1

4. LG ∈ G
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A natural guess would perhaps be that LG = LF , so
let us check if LF satisfies points 1-4 above.

By assumption we have

Q(A) = EP
[
LF · IA

]
∀A ∈ F

Since G ⊆ F we then have

Q(A) = EP
[
LF · IA

]
∀A ∈ G

so point 1 above is certainly satisfied by LF . It is
also clear that LF satisfies points 2 and 3. It thus
seems that LF is also a natural candidate for the R-N
derivative LG, but the problem is that we do not in
general have LF ∈ G.

This problem can, however, be fixed. By iterated
expectations we have, for all A ∈ G,

EP
[
LF · IA

]
= EP

[
EP

[
LF · IA

∣∣G]]
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Since A ∈ G we have

EP
[
LF · IA

∣∣G]
= EP

[
LF

∣∣G]
IA

Let us now define LG by

LG = EP
[
LF

∣∣G]
We then obviously have LG ∈ G and

Q(A) = EP
[
LG · IA

]
∀A ∈ G

It is easy to see that also points 2-3 are satisfied so we
have proved the following result.
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A formula for LG

Proposition 5: If Q << P on F and G ⊆ F then,
with notation as above, we have

LG = EP
[
LF

∣∣G]
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The likelihood process on a filtered space

We now consider the case when we have a probability
measure P on some space Ω and that instead of just
one σ-algebra F we have a filtration, i.e. an increasing
family of σ-algebras {Ft}t≥0.

The interpretation is as usual that Ft is the information
available to us at time t, and that we have Fs ⊆ Ft

for s ≤ t.

Now assume that we also have another measure Q,
and that for some fixed T , we have Q << P on FT .
We define the random variable LT by

LT =
dQ

dP
on FT

Since Q << P on FT we also have Q << P on Ft

for all t ≤ T and we define

Lt =
dQ

dP
on Ft 0 ≤ t ≤ T

For every t we have Lt ∈ Ft, so L is an adapted
process, known as the likelihood process.
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The L process is a P martingale

We recall that

Lt =
dQ

dP
on Ft 0 ≤ t ≤ T

Since Fs ⊆ Ft for s ≤ t we can use Proposition 5 and
deduce that

Ls = EP [Lt| Fs] s ≤ t ≤ T

and we have thus proved the following result.

Proposition: Given the assumptions above, the
likelihood process L is a P -martingale.
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Where are we heading?

We are now going to perform measure transformations
on Wiener spaces, where P will correspond to the
objective measure and Q will be the risk neutral
measure.

For this we need define the proper likelihood process L
and, since L is a P -martingale, we have the following
natural questions.

• What does a martingale look like in a Wiener driven
framework?

• Suppose that we have a P -Wiener process W and
then change measure from P to Q. What are the
properties of W under the new measure Q?

These questions are handled by the Martingale
Representation Theorem, and the Girsanov Theorem
respectively.
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3.

The Martingale Representation Theorem
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Intuition

Suppose that we have a Wiener process W under
the measure P . We recall that if h is adapted (and
integrable enough) and if the process X is defined by

Xt = x0 +
∫ t

0

hsdWs

then X is a a martingale. We now have the following
natural question:

Question: Assume that X is an arbitrary martingale.
Does it then follow that X has the form

Xt = x0 +
∫ t

0

hsdWs

for some adapted process h?

In other words: Are all martingales stochastic integrals
w.r.t. W?
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Answer

It is immediately clear that all martingales can not be
written as stochastic integrals w.r.t. W . Consider for
example the process X defined by

Xt =

{
0 for 0 ≤ t < 1
Z for t ≥ 1

where Z is an random variable, independent of W ,
with E [Z] = 0.

X is then a martingale (why?) but it is clear (how?)
that it cannot be written as

Xt = x0 +
∫ t

0

hsdWs

for any process h.
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Intuition

The intuitive reason why we cannot write

Xt = x0 +
∫ t

0

hsdWs

in the example above is of course that the random
variable Z “has nothing to do with” the Wiener process
W . In order to exclude examples like this, we thus need
an assumption which guarantees that our probability
space only contains the Wiener process W and nothing
else.

This idea is formalized by assuming that the filtration
{Ft}t≥0 is the one generated by the Wiener
process W .
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The Martingale Representation Theorem

Theorem. Let W be a P -Wiener process and assume
that the filtation is the internal one i.e.

Ft = FW
t = σ {Ws; 0 ≤ s ≤ t}

Then, for every (P,Ft)-martingale X, there exists a
real number x and an adapted process h such that

Xt = x +
∫ t

0

hsdWs,

i.e.
dXt = htdWt.

Proof: Hard. This is very deep result.
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Note

For a given martingale X, the Representation Theorem
above guarantees the existence of a process h such that

Xt = x +
∫ t

0

hsdWs,

The Theorem does not, however, tell us how to find
or construct the process h.
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The Girsanov Theorem
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Setup

Let W be a P -Wiener process and fix a time horizon
T . Suppose that we want to change measure from P
to Q on FT . For this we need a P -martingale L with
L0 = 1 to use as a likelihood process, and a natural
way of constructing this is to choose a process g and
then define L by{

dLt = gtdWt

L0 = 1

This definition does not guarantee that L ≥ 0, so we
make a small adjustment. We choose a process ϕ and
define L by {

dLt = LtϕtdWt

L0 = 1

The process L will again be a martingale and we easily
obtain

Lt = e
R t
0 ϕsdWs−1

2

R t
0 ϕ2

sds
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Thus we are guaranteed that L ≥ 0. We now change
measure form P to Q by setting

dQ = LtdP, on Ft, 0 ≤ t ≤ T

The main problem is to find out what the properties
of W are, under the new measure Q. This problem is
resolved by the Girsanov Theorem.
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The Girsanov Theorem

Let W be a P -Wiener process. Fix a time horizon T .

Theorem: Choose an adapted process ϕ, and define
the process L by{

dLt = LtϕtdWt

L0 = 1

Assume that EP [LT ] = 1, and define a new mesure Q
on FT by

dQ = LtdP, on Ft, 0 ≤ t ≤ T

Then Q << P and the process WQ, defined by

WQ
t = Wt −

∫ t

0

ϕsds

is Q-Wiener. We can also write this as

dWt = ϕtdt + dWQ
t
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Changing the drift in an SDE

The single most common use of the Girsanov Theorem
is as follows.

Suppose that we have a process X with P dynamics

dXt = µtdt + σtdWt

where µ and σ are adapted and W is P -Wiener.

We now do a Girsanov Transformation as above, and
the question is what the Q-dynamics look like.

From the Girsanov Theorem we have

dWt = ϕtdt + dWQ
t

and substituting this into the P -dynamics we obtain
the Q dynamics as

dXt = {µt + σtϕt} dt + σtdWQ
t

Moral: The drift changes but the diffusion is
unaffected.
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The Converse of the Girsanov Theorem

Let W be a P -Wiener process. Fix a time horizon T .

Theorem. Assume that:

• Q << P on FT , with likelihood process

Lt =
dQ

dP
, on Ft 0,≤ t ≤ T

• The filtation is the internal one .i.e.

Ft = σ {Ws; 0 ≤ s ≤ t}

Then there exists a process ϕ such that{
dLt = LtϕtdWt

L0 = 1
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Financial Markets

Price Processes:

St =
[
S0

t , ..., SN
t

]
Example: (Black-Scholes, S0 := B, S1 := S)

dSt = αStdt + σStdWt,

dBt = rBtdt.

Portfolio:
ht =

[
h0

t , ..., h
N
t

]
hi

t = number of units of asset i at time t.

Value Process:

V h
t =

N∑
i=0

hi
tS

i
t = htSt
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Self Financing Portfolios

Definition: (intuitive)
A portfolio is self-financing if there is no exogenous
infusion or withdrawal of money. “The purchase of a
new asset must be financed by the sale of an old one.”

Definition: (mathematical)
A portfolio is self-financing if the value process
satisfies

dVt =
N∑

i=0

hi
tdSi

t

Major insight:
If the price process S is a martingale, and if h is
self-financing, then V is a martingale.

NB! This simple observation is in fact the basis of the
following theory.
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Arbitrage

The portfolio u is an arbitrage portfolio if

• The portfolio strategy is self financing.

• V0 = 0.

• VT ≥ 0, P − a.s.

• P (VT > 0) > 0

Main Question: When is the market free of arbitrage?
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First Attempt

Proposition: If S0
t , · · · , SN

t are P -martingales, then
the market is free of arbitrage.

Proof:
Assume that V is an arbitrage strategy. Since

dVt =
N∑

i=0

hi
tdSi

t,

V is a P -martingale, so

V0 = EP [VT ] > 0.

This contradicts V0 = 0.

True, but useless.
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Example: (Black-Scholes)

dSt = αStdt + σStdWt,

dBt = rBtdt.

(We would have to assume that α = r = 0)

We now try to improve on this result.
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Choose S0 as numeraire

Definition:
The normalized price vector Z is given by

Zt =
St

S0
t

=
[
1, Z1

t , ..., ZN
t

]
The normalized value process V Z is given by

V Z
t =

N∑
0

hi
tZ

i
t.

Idea:
The arbitrage and self financing concepts should be
independent of the accounting unit.
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Invariance of numeraire

Proposition: One can show (see the book) that

• S-arbitrage ⇐⇒ Z-arbitrage.

• S-self-financing ⇐⇒ Z-self-financing.

Insight:

• If h self-financing then

dV Z
t =

N∑
1

hi
tdZ

i
t

• Thus, if the normalized price process Z is a P -
martingale, then V Z is a martingale.
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Second Attempt

Proposition: If Z0
t , · · · , ZN

t are P -martingales, then
the market is free of arbitrage.

True, but still fairly useless.

Example: (Black-Scholes)

dSt = αStdt + σStdWt,

dBt = rBtdt.

dZ1
t = (α− r)Z1

t dt + σZ1
t dWt,

dZ0
t = 0dt.

We would have to assume “risk-neutrality”, i.e. that
α = r.
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Arbitrage

Recall that h is an arbitrage if

• h is self financing

• V0 = 0.

• VT ≥ 0, P − a.s.

• P (VT > 0) > 0

Major insight

This concept is invariant under an equivalent change
of measure!
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Martingale Measures

Definition: A probability measure Q is called an
equivalent martingale measure (EMM) if and only
if it has the following properties.

• Q and P are equivalent, i.e.

Q ∼ P

• The normalized price processes

Zi
t =

Si
t

S0
t

, i = 0, . . . , N

are Q-martingales.

Wan now state the main result of arbitrage theory.
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First Fundamental Theorem

Theorem: The market is arbitrage free

iff

there exists an equivalent martingale measure.
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Comments

• It is very easy to prove that existence of EMM
imples no arbitrage (see below).

• The other imnplication is technically very hard.

• For discrete time and finite sample space Ω the hard
part follows easily from the separation theorem for
convex sets.

• For discrete time and more general sample space we
need the Hahn-Banach Theorem.

• For continuous time the proof becomes technically
very hard, mainly due to topological problems. See
the textbook.
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Proof that EMM implies no arbitrage

This is basically done above. Assume that there exists
an EMM denoted by Q. Assume that P (VT ≥ 0) = 1
and P (VT > 0) > 0. Then, since P ∼ Q we also have
Q(VT ≥ 0) = 1 and Q(VT > 0) > 0.

Recall:

dV Z
t =

N∑
1

hi
tdZ

i
t

Q is a martingale measure

⇓

V Z is a Q-martingale

⇓

V0 = V Z
0 = EQ

[
V Z

T

]
> 0

⇓

No arbitrage
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Choice of Numeraire

The numeraire price S0
t can be chosen arbitrarily. The

most common choice is however that we choose S0 as
the bank account, i.e.

S0
t = Bt

where
dBt = rtBtdt

Here r is the (possibly stochastic) short rate and we
have

Bt = e
R t
0 rsds
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Example: The Black-Scholes Model

dSt = αStdt + σStdWt,

dBt = rBtdt.

Look for martingale measure. We set Z = S/B.

dZt = Zt(α− r)dt + ZtσdWt,

Girsanov transformation on [0, T ]:{
dLt = LtϕtdWt,

L0 = 1.

dQ = LTdP, on FT

Girsanov:
dWt = ϕtdt + dWQ

t ,

where WQ is a Q-Wiener process.
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The Q-dynamics for Z are given by

dZt = Zt [α− r + σϕt] dt + ZtσdWQ
t .

Unique martingale measure Q, with Girsanov kernel
given by

ϕt =
r − α

σ
.

Q-dynamics of S:

dSt = rStdt + σStdWQ
t .

Conclusion: The Black-Scholes model is free of
arbitrage.
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Pricing

We consider a market Bt, S
1
t , . . . , SN

t .

Definition:
A contingent claim with delivery time T , is a random
variable

X ∈ FT .

“At t = T the amount X is paid to the holder of the
claim”.

Example: (European Call Option)

X = max [ST −K, 0]

Let X be a contingent T -claim.

Problem: How do we find an arbitrage free price
process Πt [X] for X?
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Solution

The extended market

Bt, S
1
t , . . . , SN

t ,Πt [X]

must be arbitrage free, so there must exist a martingale
measure Q for (Bt, St,Πt [X]). In particular

Πt [X]
Bt

must be a Q-martingale, i.e.

Πt [X]
Bt

= EQ

[
ΠT [X]

BT

∣∣∣∣Ft

]

Since we obviously (why?) have

ΠT [X] = X

we have proved the main pricing formula.
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Risk Neutral Valuation

Theorem: For a T -claim X, the arbitrage free price is
given by the formula

Πt [X] = EQ
[
e−

R T
t rsds ×X

∣∣∣Ft

]
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Example: The Black-Scholes Model

Q-dynamics:

dSt = rStdt + σStdWQ
t .

Simple claim:
X = Φ(ST ),

Πt [X] = e−r(T−t)EQ [Φ(ST )| Ft]

Kolmogorov ⇒

Πt [X] = F (t, St)

where F (t, s) solves the Black-Scholes equation:
∂F
∂t + rs∂F

∂s + 1
2σ

2s2∂2F
∂s2 − rF = 0,

F (T, s) = Φ(s).
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Problem

Recall the valuation formula

Πt [X] = EQ
[
e−

R T
t rsds ×X

∣∣∣Ft

]
What if there are several different martingale measures
Q?

This is connected with the completeness of the
market.
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Hedging

Def: A portfolio is a hedge against X (“replicates
X”) if

• h is self financing

• VT = X, P − a.s.

Def: The market is complete if every X can be
hedged.

Pricing Formula:
If h replicates X, then a natural way of pricing X is

Πt [X] = V h
t

When can we hedge?
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Existence of hedge

m

Existence of stochastic integral
representation
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Fix T -claim X.

If h is a hedge for X then

• V Z
T = X

BT

• h is self financing, i.e.

dV Z
t =

K∑
1

hi
tdZ

i
t

Thus V Z is a Q-martingale.

V Z
t = EQ

[
X

BT

∣∣∣∣Ft

]
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Lemma:
Fix T -claim X. Define martingale M by

Mt = EQ

[
X

Bt

∣∣∣∣Ft

]

Suppose that there exist predictable processes
h1, · · · , hN such that

Mt = x +
N∑

i=1

∫ t

0

hi
sdZ

i
s,

Then X can be replicated.
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Proof

We guess that

Mt = V Z
t = hB

t · 1 +
N∑

i=1

hi
tZ

i
t

Define: hB by

hB
t = Mt −

N∑
i=1

hi
tZ

i
t.

We have Mt = V Z
t , and we get

dV Z
t = dMt =

N∑
i=1

hi
tdZti,

so the portfolio is self financing. Furthermore:

V Z
T = MT = EQ

[
X

BT

∣∣∣∣FT

]
=

X

BT
.
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Second Fundamental Theorem

The second most important result in arbitrage theory
is the following.

Theorem:

The market is complete

iff

the martingale measure Q is unique.

Proof: It is obvious (why?) that if the market
is complete, then Q must be unique. The other
implication is very hard to prove. It basically relies on
duality arguments from functional analysis.
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Black-Scholes Model

Q-dynamics

dSt = rStdt + σStdWQ
t ,

dZt = ZtσdWQ
t

Mt = EQ
[
e−rTX

∣∣Ft

]
,

Representation theorem for Wiener processes
⇓

there exists g such that

Mt = M(0) +
∫ t

0

gsdWQ
s .

Thus

Mt = M0 +
∫ t

0

h1
sdZs,

with h1
t = gt

σZt
.
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Result:
X can be replicated using the portfolio defined by

h1
t = gt/σZt,

hB
t = Mt − h1

tZt.

Moral: The Black Scholes model is complete.
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Special Case: Simple Claims

Assume X is of the form X = Φ(ST )

Mt = EQ
[
e−rTΦ(ST )

∣∣Ft

]
,

Kolmogorov backward equation ⇒ Mt = f(t, St){
∂f
∂t + rs∂f

∂s + 1
2σ

2s2∂2f
∂s2 = 0,

f(T, s) = e−rTΦ(s).

Itô ⇒
dMt = σSt

∂f

∂s
dWQ

t ,

so

gt = σSt ·
∂f

∂s
,

Replicating portfolio h:

hB
t = f − St

∂f

∂s
,

h1
t = Bt

∂f

∂s
.

Interpretation: f(t, St) = V Z
t .
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Define F (t, s) by

F (t, s) = ertf(t, s)

so F (t, St) = Vt. Then hB
t = F (t,St)−St

∂F
∂s (t,St)

Bt
,

h1
t = ∂F

∂s (t, St)

where F solves the Black-Scholes equation

{
∂F
∂t + rs∂F

∂s + 1
2σ

2s2∂2F
∂s2 − rF = 0,

F (T, s) = Φ(s).
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Main Results

• The market is arbitrage free ⇔ There exists a
martingale measure Q

• The market is complete ⇔ Q is unique.

• Every X must be priced by the formula

Πt [X] = EQ
[
e−

R T
t rsds ×X

∣∣∣Ft

]
for some choice of Q.

• In a non-complete market, different choices of Q
will produce different prices for X.

• For a hedgeable claim X, all choices of Q will
produce the same price for X:

Πt [X] = Vt = EQ
[
e−

R T
t rsds ×X

∣∣∣Ft

]
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Completeness vs No Arbitrage
Rule of Thumb

Question:
When is a model arbitrage free and/or complete?

Answer:
Count the number of risky assets, and the number of
random sources.

R = number of random sources

N = number of risky assets

Intuition:
If N is large, compared to R, you have lots of
possibilities of forming clever portfolios. Thus lots
of chances of making arbitrage profits. Also many
chances of replicating a given claim.
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Rule of thumb

Generically, the following hold.

• The market is arbitrage free if and only if

N ≤ R

• The market is complete if and only if

N ≥ R

Example:
The Black-Scholes model.

dSt = αStdt + σStdWt,

dBt = rBtdt.

For B-S we have N = R = 1. Thus the Black-Scholes
model is arbitrage free and complete.
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Stochastic Discount Factors

Given a model under P . For every EMM Q we define
the corresponding Stochastic Discount Factor, or
SDF, by

Dt = e−
R t
0 rsdsLt,

where

Lt =
dQ

dP
, on Ft

There is thus a one-to-one correspondence between
EMMs and SDFs.

The risk neutral valuation formula for a T -claim X can
now be expressed under P instead of under Q.

Proposition: With notation as above we have

Πt [X] =
1
Dt

EP [DTX| Ft]

Proof: Bayes’ formula.
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Martingale Property of S ·D

Proposition: If S is an arbitrary price process, then
the process

StDt

is a P -martingale.

Proof: Bayes’ formula.
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3.

Incomplete Markets

Ch. 15
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Derivatives on Non Financial Underlying

Recall: The Black-Scholes theory assumes that the
market for the underlying asset has (among other
things) the following properties.

• The underlying is a liquidly traded asset.

• Shortselling allowed.

• Portfolios can be carried forward in time.

There exists a large market for derivatives, where the
underlying does not satisfy these assumptions.

Examples:

• Weather derivatives.

• Derivatives on electric energy.

• CAT-bonds.
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Typical Contracts

Weather derivatives:
“Heating degree days”. Payoff at maturity T is
given by

Z = max {XT − 30, 0}
where XT is the (mean) temperature at some place.

Electricity option:
The right (but not the obligation) to buy, at time
T , at a predetermined price K, a constant flow of
energy over a predetermined time interval.

CAT bond:
A bond for which the payment of coupons and
nominal value is contingent on some (well specified)
natural disaster to take place.
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Problems

Weather derivatives:
The temperature is not the price of a traded asset.

Electricity derivatives:
Electric energy cannot easily be stored.

CAT-bonds:
Natural disasters are not traded assets.

We will treat all these problems within a factor model.
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Typical Factor Model Setup

Given:

• An underlying factor process X, which is not the
price process of a traded asset, with dynamics under
the objective probability measure P as

dXt = µ (t, Xt) dt + σ (t, Xt) dWt.

• A risk free asset with dynamics

dBt = rBtdt,

Problem:
Find arbitrage free price Πt [Z] of a derivative of the
form

Z = Φ(XT )
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Concrete Examples

Assume that Xt is the temperature at time t at the
village of Peniche (Portugal).

Heating degree days:

Φ(XT ) = 100 ·max {XT − 30, 0}

Holiday Insurance:

Φ(XT ) =

 1000, if XT < 20

0, if XT ≥ 20
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Question

Is the price Πt [Φ] uniquely determined by the P -
dynamics of X, and the requirement of an arbitrage
free derivatives market?
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NO!!

WHY?
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Stock Price Model ∼ Factor Model

Black-Scholes:

dSt = µStdt + σStdWt,

dBt = rBtdt.

Factor Model:

dXt = µ(t, Xt)dt + σ(t, Xt)dWt,

dBt = rBtdt.

What is the difference?
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Answer

• X is not the price of a traded asset!

• We can not form a portfolio based on X.
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1. Rule of thumb:

N = 0, (no risky asset)
R = 1, (one source of randomness, W )

We have N < R. The exogenously given market,
consisting only of B, is incomplete.

2. Replicating portfolios:
We can only invest money in the bank, and then sit
down passively and wait.

We do not have enough underlying assets in order
to price X-derivatives.
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• There is not a unique price for a particular
derivative.

• In order to avoid arbitrage, different derivatives
have to satisfy internal consistency relations.

• If we take one “benchmark” derivative as given,
then all other derivatives can be priced in terms of
the market price of the benchmark.

We consider two given claims Φ(XT ) and Γ(XT ). We
assume they are traded with prices

Πt [Φ] = f(t, Xt)

Πt [Γ] = g(t, Xt)
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Program:

• Form portfolio based on Φ and Γ. Use Itô on f and
g to get portfolio dynamics.

dV = V

{
uf df

f
+ ugdg

g

}
• Choose portfolio weights such that the dW− term

vanishes. Then we have

dV = V · kdt,

(“synthetic bank” with k as the short rate)

• Absence of arbitrage implies

k = r

• Read off the relation k = r!
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From Itô:
df = fµfdt + fσfdW,

where {
µf = ft+µfx+1

2σ2fxx

f ,

σf = σfx
f .

Portfolio dynamics

dV = V

{
uf df

f
+ ugdg

g

}
.

Reshuffling terms gives us

dV = V ·
{
ufµf + ugµg

}
dt+V ·

{
ufσf + ugσg

}
dW.

Let the portfolio weights solve the system{
uf + ug = 1,

ufσf + ugσg = 0.
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uf = − σg

σf − σg
,

ug =
σf

σf − σg
,

Portfolio dynamics

dV = V ·
{
ufµf + ugµg

}
dt.

i.e.

dV = V ·
{

µgσf − µfσg

σf − σg

}
dt.

Absence of arbitrage requires

µgσf − µfσg

σf − σg
= r

which can be written as

µg − r

σg
=

µf − r

σf
.

Tomas Björk, 2010 86



µg − r

σg
=

µf − r

σf
.

Note!
The quotient does not depend upon the particular
choice of contract.
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Result

Assume that the market for X-derivatives is free of
arbitrage. Then there exists a universal process λ,
such that

µf(t)− r

σf(t)
= λ(t, Xt),

holds for all t and for every choice of contract f .

NB: The same λ for all choices of f .

λ = Risk premium per unit of volatility
= “Market Price of Risk” (cf. CAPM).
= Sharpe Ratio

Slogan:
“On an arbitrage free market all X-derivatives have
the same market price of risk.”

The relation
µf − r

σf
= λ

is actually a PDE!
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Pricing Equation

 ft + {µ− λσ} fx +
1
2
σ2fxx − rf = 0

f(T, x) = Φ(x),

P -dynamics:

dX = µ(t, X)dt + σ(t, X)dW.

Can we solve the PDE?
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No!!

Why??
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Answer

Recall the PDE ft + {µ− λσ} fx +
1
2
σ2fxx − rf = 0

f(T, x) = Φ(x),

• In order to solve the PDE we need to know λ.

• λ is not given exogenously.

• λ is not determined endogenously.
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Question:

Who determines λ?
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Answer:

THE MARKET!
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Interpreting λ

Recall that the f dynamics are

df = fµfdt + fσfdWt

and λ is defined as

µf(t)− r

σf(t)
= λ(t, Xt),

• λ measures the aggregate risk aversion in the
market.

• If λ is big then the market is highly risk averse.

• If λ is zero then the market is risk netural.

• If you make an assumption about λ, then you
implicitly make an assumption about the aggregate
risk aversion of the market.
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Moral

• Since the market is incomplete the requirement of
an arbitrage free market will not lead to unique
prices for X-derivatives.

• Prices on derivatives are determined by two main
factors.

1. Partly by the requirement of an arbitrage free
derivative market. All pricing functions satisfies
the same PDE.

2. Partly by supply and demand on the market.
These are in turn determined by attitude towards
risk, liquidity consideration and other factors. All
these are aggregated into the particular λ used
(implicitly) by the market.
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Risk Neutral Valuation

We recall the PDE ft + {µ− λσ} fx +
1
2
σ2fxx − rf = 0

f(T, x) = Φ(x),

Using Feynman-Kac we obtain a risk neutral valuation
formula.
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Risk Neutral Valuation

f(t, x) = e−r(T−t)EQ
t,x [Φ(XT )]

Q-dynamics:

dXt = {µ− λσ} dt + σdWQ
t

• Price = expected value of future payments

• The expectation should not be taken under the
“objective” probabilities P , but under the “risk
adjusted” probabilities Q.
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Interpretation of the risk adjusted
probabilities

• The risk adjusted probabilities can be interpreted as
probabilities in a (fictuous) risk neutral world.

• When we compute prices, we can calculate as if
we live in a risk neutral world.

• This does not mean that we live in, or think that
we live in, a risk neutral world.

• The formulas above hold regardless of the attitude
towards risk of the investor, as long as he/she prefers
more to less.
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Diversification argument about λ

• If the risk factor is idiosyncratic and diversifiable,
then one can argue that the factor should not be
priced by the market. Compare with APT.

• Mathematically this means that λ = 0, i.e. P = Q,
i.e. the risk neutral distribution coincides with
the objective distribution.

• We thus have the “actuarial pricing formula”

f(t, x) = e−r(T−t)EP
t,x [Φ(XT )]

where we use the objective probabiliy measure P .
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Modeling Issues
Temperature:

A standard model is given by

dXt = {m(t)− bXt} dt + σdWt,

where m is the mean temperature capturing
seasonal variations. This often works reasonably
well.

Electricity:
A (naive) model for the spot electricity price is

dSt = St {m(t)− a lnSt} dt + σStdWt

This implies lognormal prices (why?). Electricty
prices are however very far from lognormal, because
of “spikes” in the prices. Complicated.

CAT bonds:
Here we have to use the theory of point processes
and the theory of extremal statistics to model
natural disasters. Complicated.
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Martingale Analysis

Model: Under P we have

dXt = µ (t, Xt) dt + σ (t, Xt) dWt,

dBt = rBtdt,

We look for martingale measures. Since B is the only
traded asset we need to find Q ∼ P such that

Bt

Bt
= 1

is a Q martingale.

Result: In this model, every Q ∼ P is a martingale
measure.

Girsanov
dLt = LtϕtdWt
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P -dynamics

dXt = µ (t, Xt) dt + σ (t, Xt) dWt,

dLt = LtϕtdWt

dQ = LtdP on Ft

Girsanov:
dWt = ϕtdt + dWQ

t

Martingale pricing:

F (t, x) = e−r(T−t)EQ [Z| Ft]

Q-dynamics of X:

dXt = {µ (t, Xt) + σ (t, Xt) ϕt} dt + σ (t, Xt) dWQ
t ,

Result: We have λt = −ϕt, i.e,. the Girsanov kernel
ϕ equals minus the market price of risk.
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Several Risk Factors

We recall the dynamics of the f -derivative

df = fµfdt + fσfdWt

and the Market Price of Risk

µf − r

σf
= λ, i.e. µf − r = λσf .

In a multifactor model of the type

dXt = µ (t, Xt) dt +
n∑

i=1

σi (t, Xt) dW i
t ,

it follows from Girsanov that for every risk factor W i

there will exist a market price of risk λi = −ϕi such
that

µf − r =
n∑

i=1

λiσi

Compare with CAPM.
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4.

Bonds and Interest Rates.
Short Rate Models

Ch. 22-23
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Definitions

Bonds:
T -bond = zero coupon bond, paying $1 at the date of
maturity T .

p(t, T ) = price, at t, of a T -bond.

p(T, T ) = 1.

Main Problem

• Investigate the term structure, i.e. how prices of
bonds with different dates of maturity are related
to each other.

• Compute arbitrage free prices of interest rate
derivatives (bond options, swaps, caps, floors etc.)
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Risk Free Interest Rates

At time t:

• Sell one S-bond

• Buy exactly p(t, S)/p(t, T ) T−bonds

• Net investment at t: $0.

At time S:

• Pay $1

At time T:

• Collect $p(t, S)/p(t, T ) · 1
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Net Effect

• The contract is made at t.

• An investment of 1 at time S has yielded
p(t, S)/p(t, T ) at time T .

• The equivalent constant rates, R, are given as the
solutions to

Continuous rate:

eR·(T−S) · 1 =
p(t, S)
p(t, T )

Simple rate:

[1 + R · (T − S)] · 1 =
p(t, S)
p(t, T )
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Continuous Interest Rates

1. The forward rate for the period [S, T ],
contracted at t is defined by

R(t;S, T ) = −log p(t, T )− log p(t, S)
T − S

.

2. The spot rate, R(S, T ), for the period [S, T ] is
defined by

R(S, T ) = R(S;S, T ).

3. The instantaneous forward rate at T , conracted
at t is defined by

f(t, T ) = −∂ log p(t, T )
∂T

= lim
S→T

R(t;S, T ).

4. The instantaneous short rate at t is defined by

r(t) = f(t, t).
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Simple Rates (LIBOR)

1. The simple forward rate L(t;S,T)for the period
[S, T ], contracted at t is defined by

L(t;S, T ) =
1

T − S
· p(t, S)− p(t, T )

p(t, T )

2. The simple spot rate, L(S, T ), for the period
[S, T ] is defined by

L(S, T ) =
1

T − S
· 1− p(S, T )

p(S, T )
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Practical Formula (LIBOR)

The simple spot rate, L(T, T + δ), for the period
[T, T + δ] is given by

p(T, T + δ) =
1

1 + δL(T, T + δ)

i.e.

L =
1
δ
· 1− p

p
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Bond prices ∼ forward rates

p(t, T ) = p(t, s) · exp

{
−

∫ T

s

f(t, u)du

}
,

In particular we have

p(t, T ) = exp

{
−

∫ T

t

f(t, s)ds

}
.
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Interest Rate Options

Problem:
We want to price, at t, a European Call, with exercise
date S, and strike price K, on an underlying T -bond.
(t < S < T ).

Naive approach: Use Black-Scholes’s formula.

F (t, p) = pN [d1]− e−r(S−t)KN [d2] .

d1 =
1

σ
√

S − t

{
ln

( p

K

)
+

(
r +

1
2
σ2

)
(S − t)

}
,

d2 = d1 − σ
√

S − t.

where
p = p(t, T )
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Is this allowed?

• p shall be the price of a traded asset. OK!

• The volatility of p must be constant. Here we have
a problem because of pull-to-par, i.e. the fact that
p(T, T ) = 1. Bond volatilities will tend to zero as
the bond approaches the time of maturity.

• The short rate must be constant and
deterministic. Here the approach collapses
completely, since the whole point of studying
bond prices lies in the fact that interest rates are
stochastic.

There is some hope in the case when the remaining
time to exercise the option is small in relation to the
remaining time to maturity of the underlying bond
(why?).
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Deeply felt need

A consistent arbitrage free model for the
bond market
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Stochastic interest rates

We assume that the short rate r is a stochastic process.

Money in the bank will then grow according to:{
dB(t) = r(t)B(t)dt,
B(0) = 1.

i.e.

B(t) = e
R t
0 r(s)ds
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Models for the short rate

Model: (In reality)

P:

dr = µ(t, r)dt + σ(t, r)dW,

dB = r(t)Bdt.

Question: Are bond prices uniquely determined
by the P -dynamics of r, and the requirement of an
arbitrage free bond market?
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NO!!

WHY?
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Stock Models ∼ Interest Rates

Black-Scholes:

dS = αSdt + σSdw,

dB = rBdt.

Interest Rates:

dr = µ(t, r)dt + σ(t, r)dW,

dB = rtBdt.

Question: What is the difference?

Answer: The short rate r is not the price of a
traded asset!
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1. Meta-Theorem:

N = 0, (no risky asset)
R = 1, (one source of randomness, W )

We have M < R. The exongenously given market,
consisting only of B, is incomplete.

2. Replicating portfolios:
We can only invest money in the bank, and then sit
down passively and wait.

We do not have enough underlying assets in order
to price bonds.
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• There is not a unique price for a particular
T−bond.

• In order to avoid arbitrage, bonds of different
maturities have to satisfy internal consistency
relations.

• If we take one “benchmark” T0-bond as given, then
all other bonds can be priced in terms of the market
price of the benchmark bond.

Assumption:

p(t, T ) = F (t, rt;T )

p(t, T ) = FT (t, rt),

FT (T, r) = 1.
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Program

• Form portfolio based on T− and S−bonds. Use Itô
on FT (t, r(t)) to get bond- and portfolio dynamics.

dV = V

{
uT

dFT

FT
+ uS

dFS

FS

}
• Choose portfolio weights such that the dW− term

vanishes. Then we have

dV = V · kdt,

(“synthetic bank” with k as the short rate)

• Absence of arbitrage ⇒ k = r .

• Read off the relation k = r!
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From Itô:

dFT = FTαTdt + FTσTdW̃ ,

where  αT = F T
t +µF T

r +1
2σ2F T

rr

F T ,

σT = σF T
r

F T .

Portfolio dynamics

dV = V

{
uT dFT

FT
+ uSdFS

FS

}
.

Reshuffling terms gives us

dV = V ·
{
uTαT + uSαS

}
dt+V ·

{
uTσT + uSσS

}
dW.

Let the portfolio weights solve the system{
uT + uS = 1,

uTσT + uSσS = 0.
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{
uT = − σS

σT−σS
,

uS = σT
σT−σS

,

Portfolio dynamics

dV = V ·
{
uTαT + uSαS

}
dt.

i.e.

dV = V ·
{

αSσT − αTσS

σT − σS

}
dt.

Absence of arbitrage requires

αSσT − αTσS

σT − σS
= r

which can be written as

αS(t)− r(t)
σS(t)

=
αT (t)− r(t)

σT (t)
.
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αS(t)− r(t)
σS(t)

=
αT (t)− r(t)

σT (t)
.

Note!
The quotient does not depend upon the particular
choice of maturity date.
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Result

Assume that the bond market is free of arbitrage. Then
there exists a universal process λ, such that

αT (t)− r(t)
σT (t)

= λ(t),

holds for all t and for every choice of maturity T .

NB: The same λ for all choices of T .

λ = Risk premium per unit of volatility
= “Market Price of Risk” (cf. CAPM).

Slogan:
“On an arbitrage free market all bonds have the same
market price of risk.”

The relation
αT − r

σT
= λ

is actually a PDE!
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The Term Structure Equation

 FT
t + {µ− λσ}FT

r +
1
2
σ2FT

rr − rFT = 0,

FT (T, r) = 1.

P -dynamics:

dr = µ(t, r)dt + σ(t, r)dW.

λ =
αT − r

σT
, for all T

In order to solve the TSE we need to know λ.
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General Term Structure Equation

Contingent claim:

X = Φ(r(T ))

Result:
The price is given by

Π [t;X] = F (t, r(t))

where F solves

Ft + {µ− λσ}Fr +
1
2
σ2Frr − rF = 0,

F (T, r) = Φ(r).

In order to solve the TSE we need to know λ.
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Who determines λ?

THE MARKET!

Tomas Björk, 2010 128



Moral

• Since the market is incomplete the requirement of
an arbitrage free bond market will not lead to unique
bond prices.

• Prices on bonds and other interest rate derivatives
are determined by two main factors.

1. Partly by the requirement of an arbitrage free
bond market (the pricing functions satisfies the
TSE).

2. Partly by supply and demand on the market.
These are in turn determined by attitude towards
risk, liquidity consideration and other factors. All
these are aggregated into the particular λ used
(implicitly) by the market.
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Risk Neutral Valuation

Using Feynmac–Kač we obtain

F (t, r;T ) = EQ
t,r

[
e−

R T
t r(s)ds × 1

]
.

Q-dynamics:

dr = {µ− λσ}dt + σdW
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Risk Neutral Valuation

Π [t;X] = EQ
t,r

[
e−

R T
t r(s)ds ×X

]
Q-dynamics:

dr = {µ− λσ}dt + σdW

• Price = expected value of future payments

• The expectation should not be taken under the
“objective” probabilities P , but under the “risk
adjusted” probabilities Q.
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Interpetation of the risk adjusted
probabilities

• The risk adjusted probabilities can be interpreted as
probabilities in a (fictuous) risk neutral world.

• When we compute prices, we can calculate as if
we live in a risk neutral world.

• This does not mean that we live in, or think that
we live in, a risk neutral world.

• The formulas above hold regardless of the attitude
towards risk of the investor, as long as he/she prefers
more to less.
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Martingale Analysis

Model: Under P we have

drt = µ (t, rt) dt + σ (t, rt) dWt,

dBt = rBtdt,

We look for martingale measures. Since B is the only
traded asset we need to find Q ∼ P such that

Bt

Bt
= 1

is a Q martingale.

Result: In a short rate model, every Q ∼ P is a
martingale measure.

Girsanov
dLt = LtϕtdWt
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P -dynamics

drt = µ (t, rt) dt + σ (t, rt) dWt,

dLt = LtϕtdWt

dQ = LtdP on Ft

Girsanov:
dWt = ϕtdt + dWQ

t

Martingale pricing:

Π [t;Z] = EQ
[
e−

R t
0 rsdsZ

∣∣∣Ft

]
Q-dynamics of r:

drt = {µ (t, rt) + σ (t, rt) ϕt} dt + σ (t, rt) dWQ
t ,

Result: We have λt = −ϕt, i.e,. the Girsanov kernel
ϕ equals minus the market price of risk.
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5.

Martingale Models for the Short Rate

Ch. 24
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Martingale Modelling

Recall:

Πt [X] = EQ
[
e−

R t
0 rsds ·X

∣∣∣Ft

]
• All prices are determined by the Q-

dynamics of r.

• Model dr directly under Q!

Problem: Parameter estimation!
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Pricing under risk adjusted probabilities

Q-dynamics:

dr = µ(t, r)dt + σ(t, r)dW

where W denotes a Q-Wiener process.

Πt [X] = EQ
[
e−

R T
t rsds ×X

∣∣∣Ft

]
p(t, T ) = EQ

[
e−

R T
t rsds × 1

∣∣∣Ft

]

The case X = Φ(rT ):

price given by

Πt [X] = F (t, rt){
Ft + µFr + 1

2σ
2Frr − rF = 0,

F (T, r) = Φ(r(T )).
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1. Vasiček
dr = (b− ar) dt + σdW,

2. Cox-Ingersoll-Ross

dr = (b− ar) dt + σ
√

rdW,

3. Dothan
dr = ardt + σrdW,

4. Black-Derman-Toy

dr = Φ(t)rdt + σ(t)rdW,

5. Ho-Lee
dr = Φ(t)dt + σdW,

6. Hull-White (extended Vasiček)

dr = {Φ(t)− ar} dt + σdW,
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Bond Options

European call on a T -bond with strike price K and
delivery date S.

X = max [p(S, T )−K, 0]

X = max
[
FT (S, rS)−K, 0

]
We have

Πt [X] = F (t, rt)

where F solves the PDE

 Ft + µFr +
1
2
σ2Frr − rF = 0,

F (S, r) = Φ(r).

and where Φ is defined by

Φ(r) = max
[
FT (S, r)−K, 0

]
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To solve the pricing PDE for F we need to calculate

Φ(r) = max
[
FT (S, r)−K, 0

]
and for this we need to compute the theoretical bond
price function FT . We thus also need to solve the
PDE  FT

t + µFT
r +

1
2
σ2FT

rr − rFT = 0,

FT (T, r) = 1.

Lots of equations!

Need analytic solutions.
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Affine Term Structures

We have an Affine Term Structure if

F (t, r;T ) = eA(t,T )−B(t,T )r,

where A and B are deterministic functions.

Moral: If you want to obtain analytical formulas, then
you must have an ATS.

Problem: How do we specify µ and σ in order to have
an ATS?
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Main Result for ATS

Proposition: Assume that µ and σ are of the form

µ(t, r) = α(t)r + β(t),

σ2(t, r) = γ(t)r + δ(t).

Then the model admits an affine term structure

F (t, r;T ) = eA(t,T )−B(t,T )r,

where A and B satisfy the system{
Bt(t, T ) = −α(t)B(t, T ) + 1

2γ(t)B2(t, T )− 1,
B(T ;T ) = 0.

{
At(t, T ) = β(t)B(t, T )− 1

2δ(t)B
2(t, T ),

A(T ;T ) = 0.
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Parameter Estimation

Suppose that we have chosen a specific model, e.g.
H-W . How do we estimate the parameters a, b, σ?

Naive answer:
Use standard methods from statistical theory.
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WRONG!!

Tomas Björk, 2010 144



• The parameters are Q-parameters.

• Our observations are not under Q, but under P .

• Standard statistical techniques can not be used.

• We need to know the market price of risk (λ).

• Who determines λ?

• The Market!

• We must get price information from the market
in order to estimate parameters.
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Inversion of the Yield Curve

Q-dynamics with parameter list α:

dr = µ(t, r;α)dt + σ(t, r;α)dW

⇓

Theoretical term structure

p(0, T ;α); T ≥ 0

Observed term structure

p?(0, T ); T ≥ 0.
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Requirement:
A model such that the theoretical prices of today
coincide with the observed prices of today. We want
to choose tha parameter vector α such that

p(0, T ;α) ≈ p?(0, T ); ∀T ≥ 0

Number of equations = ∞ (one for each T ).
Number of unknowns = number of parameters.

Need:
Infinite parameter list.

The time dependent function Φ in Hull-White is
precisely such an infinite parameter list (one parameter
for every t).
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Result

Hull-White can be calibrated exactly to any initial term
strucutre. The calibrated model has the form

p(t, T ) =
p?(0, T )
p?(0, t)

× eC(t,rt)

where C is given by

B(t, T )f?(0, t)− σ2

2a2
B2(t, T )

(
1− e−2aT

)
−B(t, T )rt

There are analytical formulas for interest rate options.
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Short rate models

Pro:

• Easy to model r.

• Analytical formulas for bond prices and bond
options.

Con:

• Inverting the yield curve can be hard work.

• Hard to model a flexible volatility
structure for forward rates.

• With a one factor model, all points on the yield
curve are perfectly correlated.
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6.

Forward Rate Models

Ch. 25
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Heath-Jarrow-Morton

Idea:

• Model the dynamics for the entire yield curve.

• The yield curve itself (rather than the short rate r)
is the explanatory variable.

• Model forward rates. Use observed yield curve as
boundary value.

Dynamics:

df(t, T ) = α(t, T )dt + σ(t, T )dW (t),

f(0, T ) = f?(0, T ).

One SDE for every fixed maturity time T .
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Existence of martingale measure

f(t, T ) =
∂ log p(t, T )

∂T

p(t, T ) = exp

{
−

∫ T

t

f(t, s)ds

}

Thus:

Specifying forward rates.

⇐⇒

Specifying bond prices.

Thus:

No arbitrage
⇓

restrictions on α and σ.
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Strategy

• Start with P -dynamics for the forward rates

df(t, T ) = α(t, T )dt + σ(t, T )dW̄ (t)

where W̄ is P -Wiener.

• Compute the corresponding bond price dynamics.

• Do a Girsanov transformation P → Q.

• The Q-dynamics must then have the form

dp(t, T ) = rtp(t, T )dt + p(t, T )v(t, T )dW (t)

where W is Q-Wiener.
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Practical Toolbox

df(t, T ) = α(t, T )dt + σ(t, T )dW̄

⇓

dp(t, T ) = p(t, T )
{

r(t) + A(t, T ) +
1
2
‖S(t, T )‖2

}
dt

+ p(t, T )S(t, T )dW̄


A(t, T ) = −

∫ T

t
α(t, s)ds,

S(t, T ) = −
∫ T

t
σ(t, s)ds
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Girsanov

{
dL(t) = L(t)g∗(t)dW̄ (t),
L(0) = 1.

From Girsanov we have

dW̄t = gdt + dWt

where W is Q-Wiener.

From the toolbox, the Q-dynamics are obtained as

dp(t, T ) = p(t, T )r(t)dt

+
{

A(t, T ) +
1
2
||S(t, T )||2 + S(t, T )g(t)

}
dt

+ p(t, T )S(t, T )dW (t),
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Proposition:

There exists a martingale measure

m

There exists process g(t) = [g1(t), · · · gd(t)]
∗ s.t.

A(t, T ) +
1
2
||S(t, T )||2 + S(t, T )g(t) = 0, ∀t, T

Taking T -derivatives we obtain the alternative formula

α(t, T ) = σ(t, T )
∫ T

t

σ∗(t, s)ds− σ(t, T )g(t), ∀t, T
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Moral for Modeling

• Specify arbitrary volatilities σ(t, T ).

• Fix d “benchmark” maturities T1, · · · , Td. For these
maturities, specify drift terms α(t, T1), · · ·α(t, T1).

• The Girsanov kernel is uniquely determined (for each
fixed t) by

d∑
i=1

σi(t, Tj)gi(t) =
d∑

i=1

σi(t, Tj)
∫ T

0

σi(t, s)ds

− α(t, Tj), j = 1, · · · d.

• Thus Q is uniquely determined.

• All other drift terms will be uniquely defined by

α(t, T ) = σ(t, T )
∫ T

t

σ(t, s)ds−σ(t, T )g(t), ∀t, T
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Martingale Modelling

Q-dynamics:

df(t, T ) = α(t, T )dt + σ(t, T )dW (t)

• Specifying forward rates⇐⇒ specifying bond prices.

• Under Q all bond prices have r as the local rate of
return.

• Thus, martingale modeling =⇒ restrictions on α
and σ.

Which?
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Martingale modeling

Recall:

α(t, T ) = σ(t, T )
∫ T

t

σ(t, s)ds− σ(t, T )g(t), ∀t, T

Martingale modeling ⇐⇒ g = 0

Theorem: (HJM drift Condition) The bond market is
arbitrage free if and only if

α(t, T ) = σ(t, T )
∫ T

t

σ(t, s)ds.

Moral: Volatility can be specified freely. The forward
rate drift term is then uniquely determined.
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Musiela parametrization

Parameterize forward rates by the time to maturity x,
rather than time of maturity T .

Def:
r(t, x) = f(t, t + x).

Q-dynamics:

dr(t, x) = µ(t, x)dt + σ(t, x)dW.

What are the relations between µ and σ under Q?

Compare with HJM!

df(t, T ) = α(t, T )dt + σ0(t, T )dW.

where we use σ0 to denote the HJM volatility.
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dr(t, x) = d [f(t, t + x)]

= df(t, t + x) + fT (t, t + x)dt

= {α(t, t + x) + rx(t, x)} dt + σ0(t, t + x)dW

µ(t, x) = α(t, t + x) + rx(t, x)

σ(t, x) = σ0(t, t + x).

HJM-condition:

α(t, T ) = σ0(t, T )
∫ T

t

σ0(t, s)ds.

Substitute!
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The Musiela Equation

dr(t, x) =
{

∂

∂x
r(t, x) + σ(t, x)

∫ x

0

σ(t, y)dy

}
dt

+ σ(t, x)dW

When σ is deterministic this is a linear equation
in infinite dimensional space. Connections to control
theory.
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Forward Rate Models

Pro:

• Easy to model flexible volatility structure for forward
rates.

• Easy to include multiple factors.

Con:

• The short rate will typically not be a Markov process.

• Computational problems.
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7.

Change of Numeraire

Ch. 26
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Change of Numeraire

Valuation formula:

Πt [X] = EQ
[
e−

R T
t rsds ×X

∣∣∣Ft

]

Hard to compute. Double integral.

Note: If X and r are independent then

Πt [X] = EQ
[
e−

R T
t rsds

∣∣∣Ft

]
· EQ [X| Ft]

= p(t, T ) · EQ [X| Ft] .

Nice! We do not have to compute p(t, T ). It can be
observed directly on the market!
Single integral!

Sad Fact: X and r are (almost) never independent!
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Idea

Use T -bond (for a fixed T ) as numeraire. Define the
T-forward measure QT by the requirement that

Π (t)
p(t, T )

is a QT -martingale for every price process Π (t).

Then

Πt [X]
p(t, T )

= ET

[
ΠT [X]
p(T, T )

∣∣∣∣Ft

]

ΠT [X] = X, p(T, T ) = 1.

Πt [X] = p(t, T )ET [X| Ft]

Do such measures exist?.
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“The forward measure takes care of the stochastics
over the interval [t, T ].”

Enormous computational advantages.

Useful for interest rate derivatives, currency derivatives
and derivatives defined by several underlying assets.
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General change of numeraire.

Idea: Use a fixed asset price process St as numeraire.
Define the measure QS by the requirement that

Π (t)
St

is a QS-martingale for every arbitrage free price process
Π (t).
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Constructing QS

Fix a T -claim X. From general theory:

Π0 [X] = EQ

[
X

BT

]
Assume that QS exists and denote

Lt =
dQS

dQ
, on Ft

Then

Π0 [X]
S0

= ES

[
ΠT [X]

ST

]
= ES

[
X

ST

]

= EQ

[
LT

X

ST

]
Thus we have

Π0 [X] = EQ

[
LT

X · S0

ST

]
,
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For all X ∈ FT we thus have

EQ

[
X

BT

]
= EQ

[
LT

X · S0

ST

]

Natural candidate:

Lt =
dQS

t

dQt
=

St

S0Bt

Proposition:

Π (t) /Bt is a Q-martingale.
⇓

Π (t) /St is a Q?-martingale.
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Proof.

ES

[
Π (t)
St

∣∣∣∣Fs

]
=

EQ
[
Lt

Π(t)
St

∣∣∣Fs

]
Ls

=
EQ

[
Π(t)
BtS0

∣∣∣Fs

]
Ls

=
Π (s)

B(s)S0Ls

=
Π (s)
S(s)

.
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Result

Πt [X] = StE
S

[
X

St

∣∣∣∣Ft

]
We can observe St directly on the market.

Example: X = St · Y

Πt [X] = StE
S [Y | Ft]
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Several underlying

X = Φ [S0(T ), S1(T )]

Assume Φ is linearly homogeous. Transform to Q0.

Πt [X] = S0(t)E0

[
Φ [S0(T ), S1(T )]

S0(T )

∣∣∣∣Ft

]

= S0(t)E0 [ϕ (ZT )| Ft]

ϕ (z) = Φ [1, z] , Zt =
S1(t)
S0(t)
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Exchange option

X = max [S1(T )− S0(T ), 0]

Πt [X] = S0(t)E0 [max [Z(T )− 1, 0]| Ft]

European Call on Z with strike price K. Zero interest
rate.

Piece of cake!
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Identifying the Girsanov Transformation

Assume Q-dynamics of S known as

dSt = rtStdt + StvtdWt

Lt =
St

S0Bt

From this we immediately have

dLt = LtvtdWt.

and we can summarize.

Theorem:The Girsanov kernel is given by the
numeraire volatility vt, i.e.

dLt = LtvtdWt.
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Forward Measures

Use price of T -bond as numeraire.

LT
t =

p(t, T )
p(0, T )Bt

dp(t, T ) = rtp(t, T )dt + p(t, T )v(t, T )dWt,

dLT
t = LT

t v(t, T )dWt

Result:
Πt [X] = p(t, T )ET [X| Ft]

Common Conjecture: “The forward rate is an
unbiased estimator of the future spot rate:”

Lemma:
f(t, T ) = ET [rt| Ft]
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A new look on option pricing

European call on asset S with strike price K and maturity T .

X = max [ST −K, 0]

Write X as

X = (ST −K) · I {ST ≥ K} = STI {ST ≥ K} −KI {ST ≥ K}

Use QS on the first term and QT on the second.

Π0 [X] = S0 ·QS [ST ≥ K]−K · p(0, T ) ·QT [ST ≥ K]
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Analytical Results

Assumption: Assume that ZS,T , defined by

ZS,T (t) =
St

p(t, T )
,

has dynamics

dZS,T (t) = ZS,T (t)mS
T (t)dt + ZS,T (t)σS,T (t)dW,

where σS,T (t) is deterministic.

We have to compute

QT [ST ≥ K]

and
QS [ST ≥ K]
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QT (ST ≥ K) = QT

(
ST

p(T, T )
≥ K

)

= QT (ZS,T (T ) ≥ K)

By definition ZS,T is a QT -martingale, so QT -dynamics
are given by

dZS,T (t) = ZS,T (t)σS,T (t)dWT ,

with the solution

ZS,T (T ) =

S0

p(0, T )
×exp

{
−1

2

∫ T

0

σ2
S,T (t)dt +

∫ T

0

σS,T (t)dWT

}

Lognormal distribution!
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The integral

∫ T

0

σS,T (t)dWT

is Gaussian, with zero mean and variance

Σ2
S,T (T ) =

∫ T

0

‖σS,T (t)‖2dt

Thus

QT (St ≥ K) = N [d2],

d2 =
ln

(
S0

Kp(0,T )

)
− 1

2Σ
2
S,T (T )√

Σ2
S,T (T )
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QS (St ≥ K) = QS

(
p(T, T )

St
≤ 1

K

)

= QS

(
YS,T (T ) ≤ 1

K

)
,

YS,T (t) =
p(t, T )

St
=

1
ZS,T (t)

.

YS,T is a QS-martingale, so QS-dynamics are

dYS,T (t) = YS,T (t)δS,T (t)dWS.

YS,T = Z−1
S,T

⇓
δS,T (t) = −σS,T (t)
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YS,T (T ) =

p(0, T )
S0

exp

{
−1

2

∫ T

0

σ2
S,T (t)dt−

∫ T

0

σS,T (t)dWS

}
,

QS (St ≥ K) = N [d1],

d1 = d2 +
√

Σ2
S,T (T )
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Proposition: Price of call is given by

Π0 [X] = S0N [d2]−K · p(0, T )N [d1]

d2 =
ln

(
S0

Kp(0,T )

)
− 1

2Σ
2
S,T (T )√

Σ2
S,T (T )

d1 = d2 +
√

Σ2
S,T (T )

Σ2
S,T (T ) =

∫ T

0

‖σS,T (t)‖2dt
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Hull-White

Q-dynamics:

dr = {Φ(t)− ar} dt + σdW.

Affine term structure:

p(t, T ) = eA(t,T )−B(t,T )rt,

B(t, T ) =
1
a

{
1− e−a(T−t)

}
.

Check if Z has deterministic volatility

Zt =
St

p(t, T1)
, St = p(t, T2)

Zt =
p(t, T2)
p(t, T1)

,

Zt = exp {∆A(t)−∆Btrt} ,
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Z(t) = exp {∆A(t)−∆Btrt} ,

∆A(t) = A(t, T2)−A(t, T1),

∆Bt = B(t, T2)−B(t, T1),

dZ(t) = Z(t) {· · ·} dt + Z(t) · σz(t)dW,

σz(t) = −σ∆Bt =
σ

a
eat

[
e−aT1 − e−aT2

]
Deterministic volatility!
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8

LIBOR Market Models

Ch. 27
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Problems with infinitesimal rates

• Infinitesimal rates can never be observed in real life.

• Calibration to cap- or swaption data is difficult.

Disturbing facts from real life:

• The market uses Black-76 to quote caps and
swaptions. Behind Blavk-76 are the assumptions

– The short rate is constant.
– The LIBOR rates are lognormally distributed.

• Logically inconsistent!

• Despite this, the market happily continues to use
Black-76 for quoting purposes.
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Project

• Construct a logically consistent model which (to
some extent) justifies market practice.

• Construct an arbitrage free model with the
property that caps, floors and/or swaptions are
priced with a Black-76 type formula.

Main models

• LIBOR market models (Miltersen-Sandmann-
Sondermann, Brace-Gatarek-Musiela)

• Swap market models (Jamshidian).
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• Instead of modeling instantaneous rates, we model
discrete market rates, such as

– LIBOR rates (LIBOR market models)

– Forward swap rates (swap market models).

• Under a suitable numeraire the market rates can be
modeled lognormally.

• The market models with thus produce pricing
formulas of the type Black-76.

• By construction the market models are very easy to
calibrate to market data, i.e. to:

– Caps and floors (LIBOR market model)

– Swaptions (swap market model)

• Exotic derivatives has to be priced numerically.
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Caps

Resettlement dates:

T0 < T1 < . . . < Tn,

Tenor:

α = Ti+1 − Ti, i = 0, . . . , n− 1.

Typically α = 1/4, i.e. quarterly resettlement.

LIBOR forward rate for [Ti−1, Ti]:

Li(t) =
1
α
· pi−1(t)− pi(t)

pi(t)
, i = 1, . . . , N.

where we use the notation

pi(t) = p(t, Ti)

Tomas Björk, 2010 190



Definition:
A cap with cap rate R and resettlement dates
T0, . . . , Tn is a contract which at each Ti give the
holder the amount

Xi = α ·max [Li(Ti−1)−R, 0] , i = 1, . . . , N

The cap is thus a portfolio of caplets X1, . . . , Xn.
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Black-76

The Black-76 formula for the caplet

Xi = αi ·max [L(Ti−1, Ti)−R, 0] , (1)

is given by

CaplBi (t) = α · pi(t) {Li(t)N [d1]−RN [d2]}

where

d1 =
1

σi

√
Ti − t

[
ln

(
Li(t)

R

)
+

1
2
σ2

i (T − t)
]

,

d2 = d1 − σi

√
Ti − t.

• Black-76 presupposes that each LIBOR rate is
lognormal.

• The constants σ1, . . . , σN are known as the Black
volatilities
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Market price quotes

Market prices are quoted in terms of Implied Black
volatilities: The can be quoted in two different ways.

• Flat volatilities

• Spot volatilities (also known as forward
volatilities)
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Market Price Data

For each i = 1, . . . , N :

Capm
i (t) = market price of cap with resettlement

dates T0, T1, . . . , Ti

Implied market prices of caplets:

Caplmi (t) = Capm
i (t)−Capm

i−1(t),

with the convention Capm
0 (t) = 0
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Defining Implied Black Volatility

Given market price data as above, the implied Black
volatilities are defined as follows.

• The implied flat volatilities σ̄1, . . . , σ̄N are defined
as the solutions of the equations

Capm
i (t) =

i∑
k=1

CaplBk (t; σ̄i), i = 1, . . . , N. (2)

• The implied forward or spot volatilities σ̄1, . . . , σ̄N

are defined as solutions of the equations

Caplmi (t) = CaplBi (t; σ̄i), i = 1, . . . , N. (3)

The sequence σ̄1, . . . , σ̄N is called the volatility term
structure.
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Theoretical Price of a Caplet

By risk neutral valuation:

Capli(t) = αEQ
t

[
e−

R Ti
0 r(s)ds ·max [Li(Ti−1)−R, 0]

]
,

Better to use Ti forward measure

Capli(t) = αpi(t)ETi [max [Li(Ti−1)−R, 0]| Ft] ,

The crucial point is the distribution of Li under Qi

where Qi = QTi

Important Fact: Li is a martingale under Qi

Li(t) =
1
α
· pi−1(t)− pi(t)

pi(t)

Idea: Model Li as GBM under Qi:

dLi = σiLidW i
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LIBOR Market Model Definition

Define, for each i, the dynamics of Li under Qi as

dLi(t) = Li(t)σi(t)dW i(t), i = 1, . . . , N,

where σ1(t), . . . , σN(t) are deterministic and W i is
Qi-Wiener.

The initial term structure L1(0), . . . , LN(0) is observed
on the market.
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Pricing Caps in the LIBOR Model

Li(T ) = Li(t) · e
R T
t σi(s)dW i(s)−1

2

R T
t ‖σi(s)‖2ds.

Lognormal!

Theorem: Caplet prices are given by

Capli(t) = αi · pi(t) {Li(t)N [d1]−RN [d2]} ,

where

d1 =
1

Σi(t, Ti−1)

[
ln

(
Li(t)

R

)
+

1
2
Σ2

i (t, Ti−1)
]

,

d2 = d1 − Σi(t, Ti−1),

Σ2
i (t, T ) =

∫ T

t

‖σi(s)‖2ds.

Moral: Each caplet price is given by a
Black-76 formula with Σi as the Black volatility.
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Practical Handling of the LIBOR Model

We are standing at time t = 0.

• Collect implied caplet volatilities

σ̄1, . . . , σ̄N

from the market.

• Choose model volatilities

σ1(·), . . . , σN(·)

such that

σ̄i =
1
Ti

∫ Ti−1

0

σ2
i (s)ds, i = 1, . . . , N.

• Now the model is calibrated.

• Use numerical methods to compute prices of exotics.

Tomas Björk, 2010 199



Terminal Measure dynamics

Define the Likelihood process ηj
i as

ηj
i (t) =

dQj

dQi
, on Ft

Can show that

dηi−1
i (t) = ηi−1

i (t)
αiLi(t)

1 + αiLi(t)
σi(t)dW i(t).

Girsanov gives us

dW i(t) =
αiLi(t)

1 + αiLi(t)
σ?

i (t)dt + dW i−1(t).

Proposition The QN dynamics of the LIBOR rates are

dLi(t) = −Li(t)

 N∑
k=i+1

αkLk(t)
1 + αkLk(t)

σk(t)σ?
i (t)

 dt

+ Li(t)σi(t)dWN(t),

Tomas Björk, 2010 200



Computational aspects

• The terminal measure dynamics of the system of
LIBOR rates are quite messy.

• Various approximations for the drift term have been
suggested.

• Numerical work.

Tomas Björk, 2010 201


