The Fields Institute
 Free Probability and Random Matrices

Problem Set 5, Due December 13, 2007

Do two of the three questions

1) (a) Let $i_{1}, i_{2}, i_{3}, \ldots, i_{n} \in\{1,2\}$, and for n even $N C_{2}^{(i)}(n)$ be the non-crossing pairings, π, of $[n]$ such that for each pair (r, s) of π we have $i_{r}=i_{s}$. Let s_{1} and s_{2} be free semi-circular elements in (\mathcal{A}, ϕ) with $\phi\left(s_{1}^{2}\right)=\phi\left(s_{2}^{2}\right)=1$. Show that for n even

$$
\phi\left(s_{i_{1}} s_{i_{2}} \cdots s_{i_{n}}\right)=\left|N C_{2}^{(i)}(n)\right| ;
$$

and for n odd

$$
\phi\left(s_{i_{1}} s_{i_{2}} \cdots s_{i_{n}}\right)=0
$$

(b) Suppose that s_{1} and s_{2} are elements of (\mathcal{A}, ϕ) with $\phi\left(s_{1}^{2}\right)=\phi\left(s_{2}^{2}\right)=$ 1 and $i_{1}, i_{2}, i_{3}, \ldots, i_{n} \in\{1,2\}$. Suppose we have for n even

$$
\phi\left(s_{i_{1}} s_{i_{2}} \cdots s_{i_{n}}\right)=\left|N C_{2}^{(i)}(n)\right|
$$

and for n odd $\phi\left(s_{i_{1}} s_{i_{2}} \cdots s_{i_{n}}\right)=0$. Show that s_{1} and s_{2} are free.
(c) Suppose that $s_{1}, s_{2}, c \in \mathcal{A}$ with s_{1} and s_{2} semi-circular and c circular. Let $x=\left(\begin{array}{cc}s_{1} & c \\ c^{*} & s_{2}\end{array}\right) \in M_{2}(\mathcal{A})$. Define a state, ψ, on $M_{2}(\mathcal{A})$ by $\psi\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)=\frac{1}{2} \phi\left(a_{11}+a_{22}\right)$. Show that x is semi-circular by calculating $\psi\left(x^{k}\right)$ for arbitrary k.
(d) Let $s_{1}, s_{2}, s_{3}, s_{4}, c_{1}, c_{2} \in \mathcal{A}$ be such that

- $s_{1}, s_{2}, s_{3}, s_{4}$ are semi-circular with $\phi\left(s_{i}^{2}\right)=1$ for $i=1,2,3,4$;
- c_{1}, c_{2} are circular with $\phi\left(c_{i}^{*} c_{i}\right)=1$ for $i=1,2$;
- $s_{1}, s_{2}, s_{3}, s_{4}, c_{1}, c_{2}$ are ${ }^{*}$-free.

Let $x_{1}=\left(\begin{array}{cc}s_{1} & c_{1} \\ c_{1}^{*} & s_{2}\end{array}\right)$ and $x_{2}=\left(\begin{array}{ll}s_{3} & c_{2} \\ c_{2}^{*} & s_{4}\end{array}\right)$. Show by using part (b) above that x_{1} and x_{2} are free and semi-circular.
2) An alternative approach to free entropy relies on the free Fisher information, denoted by Φ^{*}. This question develops some of its basic properties.

If (\mathcal{A}, φ) is a tracial W^{*}-probability space and $X \in \mathcal{A}$ is selfadjoint, then an element $J \in L^{2}(X, \varphi)$ is called a conjugate variable for X if
we have for all $n=0,1,2, \cdots$ that

$$
\begin{equation*}
\varphi\left(J X^{n}\right)=\sum_{k=0}^{n-1} \varphi\left(X^{k}\right) \varphi\left(X^{n-k-1}\right) \tag{*}
\end{equation*}
$$

(For $n=0$ read this as $\varphi(J)=0$.)
($L^{2}(X, \varphi)$ is here the closure of polynomials in X under the norm $\|a\|_{2}^{2}:=\varphi\left(a a^{*}\right)$.)

We put (after having proved part (a) below)

$$
\Phi^{*}(X):= \begin{cases}\varphi\left(J^{2}\right), & \text { if a conjugate variable } J \text { exists } \\ +\infty, & \text { otherwise }\end{cases}
$$

a) Show that there is at most one J with these properties and that it must be selfadjoint!
b) Prove the free Fisher-Rao inequality:

$$
\Phi^{*}(X) \geq \frac{1}{\varphi\left(X^{2}\right)}
$$

c) Reformulate the condition $(*)$ in terms of free cumulants of the form $\kappa_{n}(J, X, X, \ldots, X)$ (one J as argument and $n-1 X$ as argument)!
d) Find the conjugate variable and free Fisher information of a semicircular element.
e) Show that if one finds an element $\xi \in L^{2}(\mathcal{A}, \varphi)$ which satisfies $(*)$ then the conjugate variable J of X exists and is given by $J=E(\xi)$, where $E: L^{2}(\mathcal{A}) \rightarrow L^{2}(X)$ is the orthogonal projection onto $L^{2}(X)$.
f) Use part (e) to show: If $X=X^{*}$ and $Y=Y^{*}$ are free, then

$$
\Phi^{*}(X+Y) \leq \Phi^{*}(X)+\Phi^{*}(Y)
$$

3) This exercise concerns the Brown measure presented in lecture 9; let us briefly recall the definitions. Let M be a von Neumann factor of type II_{1} with faithful normal trace τ. Given T in M, recall that the FugledeKadison determinant $\Delta(T)$ of T is defined to be $\exp (\tau(\log (|T|)))$. The Brown measure μ_{T} of T is defined to be $\nabla_{\lambda}^{2}(\log (\Delta(T-\lambda 1)))$, where $\lambda=x+i y, \nabla_{\lambda}^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}$, and all derivatives are in the distributional sense. It was shown in the lecture that μ_{T} is a Borel probability measure with support contained in the the spectrum of T.

Let $p(z)$ be a polynomial in z and ν any Borel probability measure on \mathbb{C}. Define a new Borel probability measure ν_{p} on \mathbb{C} by $\nu_{p}(E)=$ $\nu\left(p^{-1}(E)\right)$ for any Borel subset E.

Show that $\mu_{p(T)}=\left(\mu_{T}\right)_{p}$.

