The Fields Institute
 Free Probability and Random Matrices

Problem Set 4, Due November 22, 2007
Let s_{1} and s_{2} be free and semi-circular and let $c=\left(s_{1}+i s_{2}\right) / \sqrt{2}$. We call c a circular operator. Recall that $\varphi\left(c c^{*}\right)=1$ and all free cumulants of c and c^{*} are 0 with the exception of $\kappa_{2}\left(c^{*}, c\right)=\kappa_{2}\left(c, c^{*}\right)=1$.

1) Show that the norm of c is 2 .

In the next few questions we will calculate the spectral radius of c. By the formula for free cumulants with products as arguments one can show that for all positive integers m and n

$$
\begin{equation*}
\kappa_{m}\left(c^{n} c^{* n}, \ldots, c^{n} c^{* n}\right)=\varphi\left(\left(c^{n-1} c^{*(n-1)}\right)^{m}\right) \tag{*}
\end{equation*}
$$

2) Verify equation (*) directly for $n=1$ and $n=2$.
3) Denote by

$$
M_{n}(z):=\sum_{m=0}^{\infty} \varphi\left(\left(c^{n} c^{* n}\right)^{m}\right) z^{n}
$$

the moment generating series of $c^{n} c^{* n}$. Using equation $(*)$ (for general m) and the moment-cumulant formulas, show that M_{n} satisfies the equation

$$
M_{n}(z)=1+z M_{n}(z)^{n+1} .
$$

4) Show that the solution of the functional equation for M_{n} in question 3 is given by

$$
M_{n}(z)=\sum_{m=0}^{\infty} C_{n}^{(m)} z^{n}
$$

where $C_{n}^{(m)}$ are the Fuss-Catalan numbers

$$
C_{n}^{(m)}=\frac{1}{n m+1}\binom{m(n+1)}{m}
$$

5) Calculate the norm of c^{n} via

$$
\left\|c^{n}\right\|=\lim _{m \rightarrow \infty} \sqrt[2 m]{\varphi\left(\left(c^{n} c^{* n}\right)^{m}\right)}
$$

6) Calculate the spectral radius $r(c)$ of c by

$$
r(c)=\lim _{n \rightarrow \infty} \sqrt[n]{\left\|c^{n}\right\|}
$$

