FREE PROBABILITY AND RANDOM MATRICES

Lecture 6: Applications to Free Group Factors,

October 18, 2007
Let G be a countable discrete group, $\ell^{2}(G)$ the Hilbert space where elements of G, denoted ξ_{g}, form an orthonormal basis, and $\lambda: G \rightarrow$ $B\left(\ell^{2}(G)\right)$ is the left regular representation: $\lambda_{g}\left(\xi_{h}\right)=\xi_{g h} . \mathcal{L}(G)$ is the closure in the weak operator topology of $\left\{\sum_{i=1}^{n} \alpha_{i} \lambda_{g_{i}}\right\} ; \mathcal{L}(G)$ is the group von Neumann algebra of G. For $x \in \mathcal{L}(G), x \mapsto\left\langle x \xi_{e}, \xi_{e}\right\rangle$ is a faithful normal trace on $\mathcal{L}(G)$; it gives the same state considered in Lecture 2, namely

$$
\left\langle\lambda_{g} \xi_{e}, \xi_{e}\right\rangle=\left\langle\xi_{g}, \xi_{e}\right\rangle= \begin{cases}1 & g=e \\ 0 & g \neq e\end{cases}
$$

Thus $\mathcal{L}(G)$ is always a finite von Neumann algebra. If G is infinite then $\mathcal{L}(G)$ is a von Neumann algebra of type II_{1}. If every non-trivial conjugacy class $\left\{g h g^{-1} \mid g \in G\right\}(h \neq e)$ is infinite (i.e. G is an ICC group) then $\mathcal{L}(G) \cap \mathcal{L}(G)^{\prime}=\mathbb{C} 1$ and $\mathcal{L}(G)$ is a II_{1} factor.

Exercise. Show that \mathbb{F}_{n} is an ICC group.
Let M be any II_{1} factor with faithful normal trace τ and e a projection in M. Let eMe $=\{$ exe $\mid x \in M\} ; e M e$ is called the compression of M by e. It is an elementary fact in von Neumann algebra theory that the isomorphism class of $e M e$ depends only on $t=\tau(e)$ and we denote this isomorphism class by M_{t}. A deeper fact of Murray and von Neumann is that $\left(M_{s}\right)_{t}=M_{s t}$. We can define M_{t} for all $t>0$ as follows. For a positive integer n let $M_{n}=M \otimes M_{n}(\mathbb{C})$ and for any t, let $M_{t}=e\left(M_{n}\right) e$ for any projection e in M_{n} with trace t. Murray and von Neumann then defined the fundamental group of $M, \mathcal{G}(M)$, to be $\left\{t \in \mathbb{R}^{+} \mid M \simeq M_{t}\right\}$ and showed that it is a multiplicative subgroup of \mathbb{R}^{+}. It is a theorem that when G is an amenable ICC group we have $\mathcal{G}(\mathcal{L}(G))=\mathbb{R}^{+}$.

If $G=\mathbb{F}_{\infty}$ then Radulescu showed that $\mathcal{G}(\mathcal{L}(G))=\mathbb{R}^{+}$. For finite n, $\mathcal{G}\left(\mathcal{L}\left(\mathbb{F}_{n}\right)\right)$ is unknown but it is known to be either \mathbb{R}^{+}or $\{1\}$. In 1990 D. Voiculescu showed that

$$
\mathcal{L}\left(\mathbb{F}_{n}\right)_{1 / k} \simeq \mathcal{L}\left(\mathbb{F}_{m}\right) \text { where } \frac{m-1}{n-1}=k^{2}
$$

or equivalently

$$
\mathcal{L}\left(\mathbb{F}_{n}\right) \simeq M_{k}(\mathbb{C}) \otimes \mathcal{L}\left(\mathbb{F}_{m}\right) \text { where } \frac{m-1}{n-1}=k^{2}
$$

So if we embed $\mathcal{L}\left(\mathbb{F}_{m}\right)$ into $M_{k}(\mathbb{C}) \otimes \mathcal{L}\left(\mathbb{F}_{m}\right) \simeq \mathcal{L}\left(\mathbb{F}_{n}\right)$ as $x \mapsto 1 \otimes x$ then $\mathcal{L}\left(\mathbb{F}_{m}\right)$ is a subfactor of $\mathcal{L}\left(\mathbb{F}_{n}\right)$ of Jones index ${ }^{1} k^{2}$. Thus

$$
\frac{m-1}{n-1}=\left[\mathcal{L}\left(\mathbb{F}_{n}\right) ; \mathcal{L}\left(\mathbb{F}_{m}\right)\right]
$$

Now the similarity to Schreier's index formula is apparent. Indeed, suppose G is a free group of rank n and H is a subgroup of G of finite index. Then H is a free group of rank m and

$$
\frac{m-1}{n-1}=[G ; H]
$$

In order to prove that a II_{1} factor M is isomorphic to $\mathcal{L}\left(\mathbb{F}_{n}\right)$ we must show that we can find n Haar unitaries u_{1}, \ldots, u_{n} in M which are free with respect to the trace and generate M. To do this however, it suffices to find elements x_{1}, \ldots, x_{m} in M which generate M, are free with respect to the trace, and such that for each i there is a Haar unitary u_{i} such that $\overline{\operatorname{alg}\left\{1, x_{i}\right\}}=\overline{\operatorname{alg}\left\{u_{i}, u_{i}^{*}\right\}}$; for then the u_{i} 's will be free Haar unitaries generating M. If x is a self-adjoint element and the spectral measure of x is diffuse, i.e. has no atoms, then $\overline{\operatorname{alg}\{1, x\}} \simeq \mathcal{L}^{\infty}([0,1], m)$ where m is Lebesgue measure and, moreover, $u(t)=\exp (2 \pi i t)$ is a Haar unitary that generates $\mathcal{L}^{\infty}([0,1], m)$. Thus we have the following theorem.

Theorem. Let M be a II_{1} factor with x_{1}, \ldots, x_{n} free and generating M, such that the spectral measure of each x_{i} is diffuse, then $M \simeq \mathcal{L}\left(\mathbb{F}_{n}\right)$.

Example. Let $s \in M$ be a semi-circular operator. The spectral measure of s is $\sqrt{4-t^{2}} /(2 \pi) d t$ i.e. $\tau(f(s))=\int_{-2}^{2} f(t) \sqrt{4-t^{2}} /(2 \pi) d t$. If $f(t)=2\left(t \sqrt{4-t^{2}}+\sin ^{-1}(t)\right)$ and $u=\exp (i f(s))$, then u is a Haar unitary i.e. $\int_{-2}^{2} e^{i k f(t)} \sqrt{4-t^{2}} /(2 \pi) d t=\delta_{0, k}$ which generates the same von Neumann subalgebra as s.

Rather than proving Voiculescu's theorem in full generality we shall first prove a special case which illustrates the main ideas of the proof, and then sketch the general case.

Theorem. $\mathcal{L}\left(\mathbb{F}_{3}\right)_{1 / 2} \simeq \mathcal{L}\left(\mathbb{F}_{9}\right)$

[^0]We must find in $\mathcal{L}\left(\mathbb{F}_{3}\right)_{1 / 2}$ nine free elements with diffuse spectral measure which generate $\mathcal{L}\left(\mathbb{F}_{3}\right)_{1 / 2}$.

To prove this theorem we will find a von Neumann algebra M with faithful normal state ϕ and $x_{1}, x_{2}, x_{3} \in M$ such that

- the spectral measure of each x_{i} is diffuse and
- $\left\{x_{1}, x_{2}, x_{3}\right\}$ are free.

Let N be the von Neumann subalgebra of M generated by x_{1}, x_{2} and x_{3}. Then $N \simeq \mathcal{L}\left(\mathbb{F}_{3}\right)$. We will then show that there is a projection p in N such that

- $\phi(p)=1 / 2$
- there are 9 free and diffuse elements in $p N p$ which generate $p N p$.
Thus $\mathcal{L}\left(\mathbb{F}_{3}\right)_{1 / 2} \simeq p N p \simeq \mathcal{L}\left(\mathbb{F}_{9}\right)$.

Circular Operators and Complex Gaussian Random Matrices. To construct the elements x_{1}, x_{2}, x_{3} as required above we need to make a digression into circular operators. Let X be an $2 N \times 2 N$ GUE random matrix. Let $P=\left(\begin{array}{cc}I_{n} & 0_{n} \\ 0_{n} & 0_{n}\end{array}\right)$ and $G=\sqrt{2} P X(1-P)$. Then G is a $N \times N$ matrix with independent identically distributed entries which are centred complex Gaussian random variables with complex variance $1 / N$, such a matrix we call a complex Gaussian random matrix. We can determine the limiting $*$-moments of G as follows.

Exercise. Write $Y_{1}=\left(G+G^{*}\right) / \sqrt{2}$ and $Y_{2}=-i\left(G-G^{*}\right) / \sqrt{2}$ then $G=\left(Y_{1}+i Y_{2}\right) / \sqrt{2}$ and Y_{1} and Y_{2} are independent $N \times N$ GUE random matrices. Therefore be the asymptotic freeness theorem of Lecture 1, Y_{1} and Y_{2} converge as $N \rightarrow \infty$ to $\left\{s_{1}, s_{2}\right\}$, a free and semi-circular family.

Definition. Let s_{1} and s_{2} be free and semi-circular; $c=\left(s_{1}+i s_{2}\right) / \sqrt{2}$ is a circular operator, (also called Voiculescu's circular operator).

Since s_{1} and s_{2} are free we can easily calculate the free cumulants of c. If $\varepsilon= \pm 1$ let us adopt the following notation $x^{(-1)}=x^{*}$, and $x^{(1)}=x$. Recall that for a semi-circular operator s

$$
\kappa_{n}(s, s, \ldots, s)= \begin{cases}1 & n=2 \\ 0 & n \neq 2\end{cases}
$$

Thus

$$
\begin{aligned}
& \kappa_{n}\left(c^{\left(\varepsilon_{1}\right)}, c^{\left(\varepsilon_{2}\right)}, \ldots, c^{\left(\varepsilon_{n}\right)}\right) \\
& \quad=2^{-n / 2} \kappa_{n}\left(s_{1}+\varepsilon_{1} i s_{2}, \ldots, s_{1}+i \varepsilon_{n} s_{2}\right) \\
& \quad=2^{-n / 2}\left(\kappa_{n}\left(s_{1}, \ldots, s_{1}\right)+i^{n} \varepsilon_{1} \cdots \varepsilon_{n} \kappa_{n}\left(s_{2}, \ldots, s_{2}\right)\right)
\end{aligned}
$$

since all mixed cumulants are 0 . Thus $\kappa_{n}\left(c^{\left(\varepsilon_{1}\right)}, \ldots, c^{\left(\varepsilon_{n}\right)}\right)=0$ for $n \neq 2$, and

$$
\begin{aligned}
\kappa_{2}\left(c^{\left(\varepsilon_{1}\right)}, c^{\left(\varepsilon_{2}\right)}\right) & =2^{-1}\left(\kappa_{2}\left(s_{1}, s_{1}\right)-\varepsilon_{1} \varepsilon_{2} \kappa_{2}\left(s_{2}, s_{2}\right)\right) \\
& =\frac{1-\varepsilon_{1} \varepsilon_{2}}{2}= \begin{cases}1 & \varepsilon_{1} \neq \varepsilon_{2} \\
0 & \varepsilon_{1}=\varepsilon_{2}\end{cases}
\end{aligned}
$$

Hence $\kappa_{2}\left(c, c^{*}\right)=\kappa_{2}\left(c^{*}, c\right)=1, \kappa_{2}(c, c)=\kappa_{2}\left(c^{*}, c^{*}\right)=0$ and all other *-cumulants are 0 . Also

$$
\begin{aligned}
\tau\left(\left(c^{*} c\right)^{n}\right) & =\tau\left(c^{*} c c^{*} c \cdots c^{*} c\right)=\sum_{\pi \in N C(2 n)} \kappa_{\pi}\left(c^{*}, c, c^{*}, c, \ldots, c^{*}, c\right) \\
& =\sum_{\pi \in N C_{2}(2 n)} \kappa_{\pi}\left(c^{*}, c, c^{*}, c, \ldots, c^{*}, c\right)=\left|N C_{2}(2 n)\right|=\tau\left(s^{2 n}\right)
\end{aligned}
$$

Thus by the Stone-Weierstrass theorem $|c|=\sqrt{c^{*} c}$ and $|s|=\sqrt{s^{2}}$ have the same distribution. The operator $|c|=|s|$ is called a quartercircular operator and $\tau\left(|c|^{k}\right)=\int_{0}^{2} t^{k} \sqrt{4-t^{2}} / \pi d t$. An additional result which we will need is Voiculescu's theorem on the polar decomposition of a circular operator.

Definition. Let $x_{1}, \ldots, x_{n} \in(\mathcal{A}, \phi)$ a $*$-probability space, and let $\mathcal{A}_{i}=$ $\operatorname{alg}\left(1, x_{i}, x_{i}^{*}\right)$. If the algebras $\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}$ are free we say the elements x_{1}, \ldots, x_{n} are $*$-free.

Theorem (Voiculescu 1990). Let $c \in(M, \tau)$ be a circular operator and $c=u|c|$ be its polar decomposition in M. Then
i) u and $|c|$ are *-free
ii) u is a Haar unitary
iii) $|c|$ is a quarter circular operator

Proof. The proof of (i) and (ii) can either be done using random matrix methods (as was done by Voiculescu) or by showing that if u is a Haar unitary and q is a quarter-circular operator such that u and q are $*-$ free then $u q$ has the same $*$-moments as a circular operator. This is achieved by using the formula for cumulants of products ${ }^{2}$.

[^1]Theorem. Let (A, ϕ) be a unital algebra with a state ϕ. Suppose $s_{1}, s_{2}, c \in A$ are $*$-free and s_{1} and s_{2} semi-circular and circular. Then $x=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}s_{1} & c \\ c^{*} & s_{2}\end{array}\right) \in\left(M_{2}(A), \phi_{2}\right)$ is semi-circular.
Proof. Let $\mathbb{C}\left\langle x_{11}, x_{12}, x_{21}, x_{22}\right\rangle$ be the polynomials in the non-commuting variables $x_{11}, x_{12}, x_{21}, x_{22}$. Let

$$
p_{k}\left(x_{11}, x_{12}, x_{21}, x_{22}\right)=\frac{1}{2} \operatorname{Tr}\left(\left(\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right)^{k}\right)
$$

Now let $\mathcal{A}_{N}=M_{N}(\mathcal{L}(\Omega))$ be the $N \times N$ matrices with entries in $\mathcal{L}(\Omega)=\cap_{p \geq 1} L^{p}(\Omega)$. On \mathcal{A}_{N} we have the state $\phi_{N}(x)=\mathrm{E}\left(N^{-1} \operatorname{Tr}(X)\right)$. Now suppose in \mathcal{A}_{N} we have S_{1}, S_{2}, and C with S_{1} and S_{2} GUE random matrices and C a complex Gaussian random matrix with the entries of S_{1}, S_{2}, C independent. Then we know that there is a $*$-algebra \mathcal{A} with state ϕ and $s_{1}, s_{2}, c \in \mathcal{A}$, $*$-free with s_{1} and s_{2} semi-circular and c circular such that for every polynomial in non-commuting variables $p(x, y, z, w)$ we have $\phi_{N}\left(p\left(S_{1}, S_{2}, C, C^{*}\right)\right) \rightarrow \phi\left(p\left(s_{1}, s_{2}, c, c^{*}\right)\right)$.

Now let $X=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}S_{1} & C \\ C^{*} & S_{2}\end{array}\right)$. Then X is in $\mathcal{A}_{2 N}$, and

$$
\begin{aligned}
\phi_{2 N}\left(X^{k}\right) & =\phi_{N}\left(p_{k}\left(S_{1}, S_{2}, C, C^{*}\right)\right) \rightarrow \phi\left(p_{k}\left(s_{1}, s_{2}, c, c^{*}\right)\right) \\
& =\phi\left(\frac{1}{2} \operatorname{Tr}\left(x^{k}\right)\right)=\operatorname{tr} \otimes \phi\left(x^{k}\right)
\end{aligned}
$$

On the other hand X is a $2 N \times 2 N$ GUE random matrix; so $\phi_{2 N}\left(X^{k}\right)$ converges to the $k^{\text {th }}$ moment of a semi-circular operator. Hence x in $M_{2}(\mathcal{A})$ is semi-circular.

Lemma. Let \mathcal{A} be a unital $*$-algebra and ϕ a state on \mathcal{A}. Suppose $s_{1}, s_{2}, s_{3}, s_{4}, c_{1}, c_{2}, u \in \mathcal{A}$ are $*$-free with s_{1}, s_{2}, s_{3}, and s_{4} semi-circular, c_{1} and c_{2} circular and u a Haar unitary. Let

$$
x_{1}=\left(\begin{array}{ll}
s_{1} & c_{1} \\
c_{1}^{*} & s_{2}
\end{array}\right), x_{2}=\left(\begin{array}{cc}
s_{3} & c_{2} \\
c_{2}^{*} & s_{4}
\end{array}\right), x_{3}=\left(\begin{array}{cc}
u & 0 \\
0 & 2 u
\end{array}\right)
$$

Then x_{1}, x_{2}, x_{3} are $*$-free in $M_{2}(\mathcal{A})$ with state $\operatorname{tr} \otimes \phi$.
Proof. We model x_{1} by X_{1}, x_{2} by X_{2} and x_{3} by X_{3} where

$$
X_{1}=\left(\begin{array}{cc}
S_{1} & C_{1} \\
C_{1}^{*} & S_{2}
\end{array}\right), X_{2}=\left(\begin{array}{cc}
S_{3} & C_{2} \\
C_{2}^{*} & S_{3}
\end{array}\right), X_{3}=\left(\begin{array}{cc}
U & 0 \\
0 & 2 U
\end{array}\right)
$$

and $S_{1}, S_{2}, S_{3}, S_{4}$ are $N \times N$ GUE random matrices, $C_{1} C_{2}$ are $N \times$ N complex Gaussian random matrices and U is a diagonal constant unitary matrix, chosen so that the entries of X_{1} are independent from those of X_{2} and that the diagonal entries of U converge in distribution
to the uniform distribution on the unit circle. Then X_{1}, X_{2}, X_{3} are asymptotically free by Lecture 5 . Thus x_{1}, x_{2}, and x_{3} are free because they have the same distribution as the limiting distribution of X_{1}, X_{2}, and X_{3}.

Proof of main theorem. We have shown the existence of four semi-circular operators $s_{1} s_{2}, s_{3}, s_{4}$, two circular operators c_{1}, c_{2}, and a Haar unitary u in a von Neumann algebra M with trace τ such that

- $s_{1}, s_{2}, s_{3}, s_{4}, c_{1}, c_{2}, u$ are $*$-free, and
- $x_{1}=\left(\begin{array}{ll}s_{1} & c_{1} \\ c_{1}^{*} & s_{2}\end{array}\right), x_{2}=\left(\begin{array}{ll}s_{3} & c_{2} \\ c_{2}^{*} & s_{4}\end{array}\right), x_{3}=\left(\begin{array}{cc}u & 0 \\ 0 & 2 u\end{array}\right)$ are $*$-free in $\left(M_{2}(M), \operatorname{tr} \otimes \tau\right)$
- x_{1} and x_{2} are semi-circular and x_{3} has diffuse spectral measure.

Let $N=W^{*}\left(x_{1}, x_{2}, x_{3}\right) \subseteq M_{2}(M)$. Then $N \simeq \mathcal{L}\left(\mathbb{F}_{3}\right)$ because x_{1}, x_{2}, and x_{3} are free and diffuse. Also x_{3} has a spectral projection

$$
p=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \in N
$$

Let c_{1} be such that $\left(\begin{array}{cc}0 & c_{1} \\ 0 & 0\end{array}\right)=p x_{1}(1-p)$. The polar decomposition of

$$
\left(\begin{array}{cc}
0 & c_{1} \\
0 & 0
\end{array}\right) \quad \text { is } \quad\left(\begin{array}{cc}
0 & v_{1} \\
0 & 0
\end{array}\right) \cdot\left(\begin{array}{cc}
0 & 0 \\
0 & \left|c_{1}\right|
\end{array}\right)
$$

where $v_{1}\left|c_{1}\right|$ is the polar decomposition of c_{1} in M. Let

$$
v=\left(\begin{array}{cc}
0 & v_{1} \\
0 & 0
\end{array}\right) \text { then } v^{*} v=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \text { and } v v^{*}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)=p
$$

Claim: $\cup_{i=1}^{3}\left\{p x_{i} p, p x_{i} v^{*}, v x_{i} p, v x_{i} v^{*}\right\}$ generate $p N p$.
Consider for example $p x_{i_{1}} x_{i_{2}} x_{i_{3}} p \in p N p$. We have

$$
\begin{aligned}
p x_{i_{1}} x_{i_{2}} x_{i_{3}} p= & p x_{i_{1}}\left(p \cdot p+v^{*} v\right) x_{i_{2}}\left(p \cdot p+v^{*} v\right) \cdot x_{i_{3}} p \\
= & p x_{i_{1}} p \cdot p x_{i_{2}}\left(p \cdot p+v^{*} v\right) x_{i_{3}} p \\
& +p x_{i_{1}} v^{*} \cdot v x_{i_{2}}\left(p \cdot p+v^{*} v\right) x_{i_{3}} p \\
= & p x_{i_{1}} p \cdot\left(p x_{i_{2}} p \cdot p x_{i_{3}} p+p x_{i_{2}} v^{*} \cdot v x_{i_{3}} p\right) \\
& +p x_{i_{1}} v^{*}\left(v x_{i_{2}} p \cdot p x_{i_{3}} p+v x_{i_{2}} v^{*} \cdot v x_{i_{3}} p\right)
\end{aligned}
$$

is in the subalgebra generated by $\cup_{i=1}^{3}\left\{p x_{i} p, p x_{i} v^{*}, v x_{i} p, v x_{i} v^{*}\right\}$.
In general we write $p x_{i_{1}} \cdots x_{i_{n}} p$ as $p x_{i_{1}} 1 x_{i_{2}} 1 \cdots 1 x_{i_{n}} p$ and replace each 1 by $p \cdot p+v^{*} v$.

Since $v \in N, N=W^{*}\left(x_{1}, x_{2}, x_{3}\right)$ is generated by

$$
\begin{array}{lll}
\left(\begin{array}{cc}
s_{1} & 0 \\
0 & 0
\end{array}\right) & \left(\begin{array}{cc}
0 & 0 \\
0 & s_{2}
\end{array}\right) & \left(\begin{array}{cc}
0 & v_{1} \\
0 & 0
\end{array}\right)
\end{array}\left(\begin{array}{cc}
0 & 0 \\
0 & \left|c_{1}\right|
\end{array}\right)\left(\begin{array}{cc}
s_{3} & 0 \\
0 & 0
\end{array}\right)
$$

Thus $p N p$ is generated by $s_{1}, s_{2}, u, v_{1} s_{2} v_{1}^{*}, v_{1} s_{4} v_{1}^{*}, v_{1}\left|c_{1}\right| v_{1}^{*}, v_{1}\left|c_{2}\right| v_{1}^{*}$, $v_{1} u v_{1}^{*}$, and $v_{2} v_{1}^{*}$. To check that this set is free we recall a few elementary facts about freeness

Exercise.

i) if \mathcal{A}_{1} and \mathcal{A}_{2} free subalgebras of $\mathcal{A}, \mathcal{A}_{11}$ and \mathcal{A}_{12} are free subalgebras of \mathcal{A}_{1}, and \mathcal{A}_{21} and \mathcal{A}_{22} free subalgebras of \mathcal{A}_{2}; then $\mathcal{A}_{11}, \mathcal{A}_{12}, \mathcal{A}_{21}, \mathcal{A}_{22}$ are free;
ii) if u is a Haar unitary free from \mathcal{A}, then \mathcal{A} is free from $u \mathcal{A} u^{*}$;
iii) if v_{1} and v_{2} are Haar unitaries and v_{2} is free from $\left\{v_{1}\right\} \cup \mathcal{A}$ then $v_{2} v_{1}^{*}$ is free from $v_{1} \mathcal{A} v_{1}^{*}$.

By construction

$$
s_{1}, s_{2}, s_{3}, s_{4},\left|c_{1}\right|,\left|c_{2}\right|, v_{1}, v_{2}, u
$$

are free. Thus in particular

$$
s_{3}, s_{4},\left|c_{1}\right|,\left|c_{2}\right|, v_{2}, u
$$

are free. Hence by (ii)

$$
v_{1} s_{2} v_{1}^{*}, v_{1} s_{4} v_{1}^{*}, v_{1}\left|c_{1}\right| v_{1}^{*}, v_{1}\left|c_{1}\right| v_{1}^{*}, v_{1} u v_{1}^{*}
$$

are free and, in addition, free from

$$
u, s_{1}, s_{3}, v_{2}
$$

Thus

$$
u, s_{1}, s_{3}, v_{1} s_{2} v_{1}^{*}, v_{1} s_{4} v_{1}^{*}, v_{1}\left|c_{1}\right| v_{1}^{*}, v_{1}\left|c_{2}\right| v_{1}^{*}, v_{1} u v_{1}^{*}, v_{2}
$$

are free. Let $\mathcal{A}=\operatorname{alg}\left(s_{1}, s_{2}, s_{3}, s_{4},\left|c_{1}\right|,\left|c_{2}\right|, u\right)$. We have that v_{2} is free from $\left\{v_{1}\right\} \cup \mathcal{A}$, so by $(i i i), v_{2} v_{1}^{*}$ is free from $v_{1} \mathcal{A} v_{1}^{*}$. Thus $v_{2} v_{1}^{*}$ is free from

$$
v_{1} s_{2} v_{1}^{*}, v_{1} s_{4} v_{1}^{*}, v_{1}\left|c_{1}\right| v_{1}^{*}, v_{1}\left|c_{1}\right| v_{1}^{*}, v_{1} u v_{1}^{*}
$$

and it was already free from s_{1}, s_{3} and u. Thus by (i)

$$
s_{1}, s_{3}, v_{1} s_{2} v_{1}^{*}, v_{1} s_{4} v_{1}^{*}, v_{1}\left|c_{1}\right| v_{1}^{*}, v_{1}\left|c_{2}\right| v_{1}^{*}, u, v_{1} u v_{1}^{*}, v_{2} v_{1}^{*}
$$

are free. Since they are diffuse and generate $p N p$, we have that $p N p \simeq$ $\mathcal{L}\left(\mathbb{F}_{9}\right)$. Hence $\mathcal{L}\left(\mathbb{F}_{3}\right)_{1 / 2} \simeq \mathcal{L}\left(\mathbb{F}_{9}\right)$.

The general case. We write $\mathcal{L}\left(\mathbb{F}_{n}\right)=W^{*}\left(x_{1}, \ldots, x_{n}\right)$ where for $1 \leq$ $i \leq n-1$ each x_{i} is a semi-circular of the form

$$
x_{i}=\frac{1}{\sqrt{k}}\left(\begin{array}{cccc}
s_{1}^{(i)} & c_{12}^{(i)} & \ldots & c_{1 k}^{(i)} \\
c_{12}^{(i)^{*}} & \ddots & & \vdots \\
\vdots & & \ddots & c_{k-1, k}^{(i)} \\
c_{1 k}^{(i)^{*}} & \cdots & \cdots & s_{k}^{(i)}
\end{array}\right) \text { and } x_{n}=\left(\begin{array}{cccc}
u & & & \\
& 2 u & & \\
& & \ddots & \\
& & & k u
\end{array}\right)
$$

with $s_{j}^{(i)}$ semi-circular, $c_{i}^{(i)}$ circular, and u a Haar unitary, so that $\left\{s_{j}^{(i)}\right\}_{i, j} \cup\left\{c_{j}^{(i)}\right\}_{i, j} \cup\{u\}$ are $*$-free.

So we have $(n-1) k$ semi-circular operators, $(n-1)\binom{k}{2}$ circular operators and one Haar unitary. Each circular operator produces two free elements so we have in total

$$
(n-1) k+2(n-1)\binom{k}{2}+1=(n-1) k^{2}+1
$$

free and diffuse generators. Thus $\mathcal{L}\left(\mathbb{F}_{n}\right)_{1 / k} \simeq \mathcal{L}\left(\mathbb{F}_{m}\right)$ where $\frac{m-1}{n-1}=k^{2}$.

[^0]: ${ }^{1}{ }_{\S 2.3}$, V. F. R. Jones, Index for Subfactors, Invent. Math. 72 (1983), 1-25.

[^1]: ${ }^{2}$ Cor. 15.14, A. Nica and R. Speicher, Lectures on the Combinatorics of Free Probability, Cambridge U. Press, 2006

