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Let G be a countable discrete group, �2(G) the Hilbert space where
elements of G, denoted ξg, form an orthonormal basis, and λ : G →
B(�2(G)) is the left regular representation: λg(ξh) = ξgh. L(G) is the
closure in the weak operator topology of {∑n

i=1 αiλgi
}; L(G) is the

group von Neumann algebra of G. For x ∈ L(G), x �→ 〈xξe, ξe〉 is a
faithful normal trace on L(G); it gives the same state considered in
Lecture 2, namely

〈λgξe, ξe〉 = 〈ξg, ξe〉 =

{
1 g = e

0 g �= e

Thus L(G) is always a finite von Neumann algebra. If G is infinite
then L(G) is a von Neumann algebra of type II1. If every non-trivial
conjugacy class {ghg−1 | g ∈ G} (h �= e) is infinite (i.e. G is an ICC
group) then L(G) ∩ L(G)′ = C1 and L(G) is a II1 factor.

Exercise. Show that Fn is an ICC group.

Let M be any II1 factor with faithful normal trace τ and e a projec-
tion in M . Let eMe = {exe | x ∈ M}; eMe is called the compression
of M by e. It is an elementary fact in von Neumann algebra theory
that the isomorphism class of eMe depends only on t = τ(e) and we
denote this isomorphism class by Mt. A deeper fact of Murray and
von Neumann is that (Ms)t = Mst. We can define Mt for all t > 0 as
follows. For a positive integer n let Mn = M ⊗ Mn(C) and for any t,
let Mt = e(Mn)e for any projection e in Mn with trace t. Murray and
von Neumann then defined the fundamental group of M , G(M), to be
{t ∈ R

+ | M 
 Mt} and showed that it is a multiplicative subgroup of
R

+. It is a theorem that when G is an amenable ICC group we have
G(L(G)) = R

+.
If G = F∞ then Radulescu showed that G(L(G)) = R

+. For finite n,
G(L(Fn)) is unknown but it is known to be either R

+ or {1}. In 1990
D. Voiculescu showed that

L(Fn)1/k 
 L(Fm) where
m − 1

n − 1
= k2

1
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or equivalently

L(Fn) 
 Mk(C) ⊗ L(Fm) where
m − 1

n − 1
= k2

So if we embed L(Fm) into Mk(C)⊗L(Fm) 
 L(Fn) as x �→ 1⊗x then
L(Fm) is a subfactor of L(Fn) of Jones index1 k2. Thus

m − 1

n − 1
= [L(Fn);L(Fm)]

Now the similarity to Schreier’s index formula is apparent. Indeed,
suppose G is a free group of rank n and H is a subgroup of G of finite
index. Then H is a free group of rank m and

m − 1

n − 1
= [G; H]

In order to prove that a II1 factor M is isomorphic to L(Fn) we
must show that we can find n Haar unitaries u1, . . . , un in M which
are free with respect to the trace and generate M . To do this how-
ever, it suffices to find elements x1, . . . , xm in M which generate M ,
are free with respect to the trace, and such that for each i there is a
Haar unitary ui such that alg{1, xi} = alg{ui, u∗

i }; for then the ui’s
will be free Haar unitaries generating M . If x is a self-adjoint ele-
ment and the spectral measure of x is diffuse, i.e. has no atoms, then
alg{1, x} 
 L∞([0, 1], m) where m is Lebesgue measure and, moreover,
u(t) = exp(2πit) is a Haar unitary that generates L∞([0, 1], m). Thus
we have the following theorem.

Theorem. Let M be a II1 factor with x1, . . . , xn free and generating M ,
such that the spectral measure of each xi is diffuse, then M 
 L(Fn).

Example. Let s ∈ M be a semi-circular operator. The spectral mea-
sure of s is

√
4 − t2/(2π) dt i.e. τ(f(s)) =

∫ 2

−2
f(t)

√
4 − t2/(2π) dt. If

f(t) = 2(t
√

4 − t2 + sin−1(t)) and u = exp(if(s)), then u is a Haar

unitary i.e.
∫ 2

−2
eikf(t)

√
4 − t2/(2π) dt = δ0,k which generates the same

von Neumann subalgebra as s.

Rather than proving Voiculescu’s theorem in full generality we shall
first prove a special case which illustrates the main ideas of the proof,
and then sketch the general case.

Theorem. L(F3)1/2 
 L(F9)

1§2.3, V. F. R. Jones, Index for Subfactors, Invent. Math. 72 (1983), 1–25.
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We must find in L(F3)1/2 nine free elements with diffuse spectral
measure which generate L(F3)1/2.

To prove this theorem we will find a von Neumann algebra M with
faithful normal state φ and x1, x2, x3 ∈ M such that

◦ the spectral measure of each xi is diffuse and
◦ {x1, x2, x3} are free.

Let N be the von Neumann subalgebra of M generated by x1, x2 and
x3. Then N 
 L(F3). We will then show that there is a projection p
in N such that

◦ φ(p) = 1/2
◦ there are 9 free and diffuse elements in pNp which generate

pNp.

Thus L(F3)1/2 
 pNp 
 L(F9).

Circular Operators and Complex Gaussian Random Matrices.
To construct the elements x1, x2, x3 as required above we need to make
a digression into circular operators. Let X be an 2N×2N GUE random

matrix. Let P =

(
In 0n

0n 0n

)
and G =

√
2 PX(1 − P ). Then G is a

N × N matrix with independent identically distributed entries which
are centred complex Gaussian random variables with complex variance
1/N , such a matrix we call a complex Gaussian random matrix. We
can determine the limiting ∗-moments of G as follows.

Exercise. Write Y1 = (G + G∗)/
√

2 and Y2 = −i(G − G∗)/
√

2 then
G = (Y1+iY2)/

√
2 and Y1 and Y2 are independent N×N GUE random

matrices. Therefore be the asymptotic freeness theorem of Lecture 1,
Y1 and Y2 converge as N → ∞ to {s1, s2}, a free and semi-circular
family.

Definition. Let s1 and s2 be free and semi-circular; c = (s1 + is2)/
√

2
is a circular operator, (also called Voiculescu’s circular operator).

Since s1 and s2 are free we can easily calculate the free cumulants
of c. If ε = ±1 let us adopt the following notation x(−1) = x∗, and
x(1) = x. Recall that for a semi-circular operator s

κn(s, s, . . . , s) =

{
1 n = 2

0 n �= 2
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Thus

κn(c(ε1), c(ε2), . . . , c(εn))

= 2−n/2κn(s1 + ε1is2, . . . , s1 + iεns2)

= 2−n/2(κn(s1, . . . , s1) + inε1 · · · εnκn(s2, . . . , s2))

since all mixed cumulants are 0. Thus κn(c(ε1), . . . , c(εn)) = 0 for n �= 2,
and

κ2(c
(ε1), c(ε2)) = 2−1(κ2(s1, s1) − ε1ε2κ2(s2, s2))

=
1 − ε1ε2

2
=

{
1 ε1 �= ε2

0 ε1 = ε2

Hence κ2(c, c
∗) = κ2(c

∗, c) = 1, κ2(c, c) = κ2(c
∗, c∗) = 0 and all other

∗-cumulants are 0. Also

τ((c∗c)n) = τ(c∗cc∗c · · · c∗c) =
∑

π∈NC(2n)

κπ(c∗, c, c∗, c, . . . , c∗, c)

=
∑

π∈NC2(2n)

κπ(c∗, c, c∗, c, . . . , c∗, c) = |NC2(2n)| = τ(s2n)

Thus by the Stone-Weierstrass theorem |c| =
√

c∗c and |s| =
√

s2

have the same distribution. The operator |c| = |s| is called a quarter-

circular operator and τ(|c|k) =
∫ 2

0
tk
√

4 − t2/π dt. An additional result
which we will need is Voiculescu’s theorem on the polar decomposition
of a circular operator.

Definition. Let x1, . . . , xn ∈ (A, φ) a ∗-probability space, and let Ai =
alg(1, xi, x

∗
i ). If the algebras A1, . . . ,An are free we say the elements

x1, . . . , xn are ∗-free.
Theorem (Voiculescu 1990). Let c ∈ (M, τ) be a circular operator and
c = u |c| be its polar decomposition in M . Then

i) u and |c| are ∗-free
ii) u is a Haar unitary
iii) |c| is a quarter circular operator

Proof. The proof of (i) and (ii) can either be done using random matrix
methods (as was done by Voiculescu) or by showing that if u is a Haar
unitary and q is a quarter-circular operator such that u and q are ∗-
free then uq has the same ∗-moments as a circular operator. This is
achieved by using the formula for cumulants of products2. �

2Cor. 15.14, A. Nica and R. Speicher, Lectures on the Combinatorics of Free
Probability, Cambridge U. Press, 2006
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Theorem. Let (A, φ) be a unital algebra with a state φ. Suppose
s1, s2, c ∈ A are ∗-free and s1 and s2 semi-circular and c circular.

Then x =
1√
2

(
s1 c
c∗ s2

)
∈ (M2(A), φ2) is semi-circular.

Proof. Let C〈x11, x12, x21, x22〉 be the polynomials in the non-commuting
variables x11, x12, x21, x22. Let

pk(x11, x12, x21, x22) =
1

2
Tr

( (
x11 x12

x21 x22

)k )
Now let AN = MN(L(Ω)) be the N × N matrices with entries in

L(Ω) = ∩p≥1L
p(Ω). On AN we have the state φN(x) = E(N−1Tr(X)).

Now suppose in AN we have S1, S2, and C with S1 and S2 GUE random
matrices and C a complex Gaussian random matrix with the entries
of S1, S2, C independent. Then we know that there is a ∗-algebra A
with state φ and s1, s2, c ∈ A, ∗-free with s1 and s2 semi-circular and
c circular such that for every polynomial in non-commuting variables
p(x, y, z, w) we have φN(p(S1, S2, C, C∗)) → φ(p(s1, s2, c, c

∗)).

Now let X =
1√
2

(
S1 C
C∗ S2

)
. Then X is in A2N , and

φ2N(Xk) = φN(pk(S1, S2, C, C∗)) → φ(pk(s1, s2, c, c
∗))

= φ(
1

2
Tr(xk)) = tr ⊗ φ(xk)

On the other hand X is a 2N×2N GUE random matrix; so φ2N(Xk)
converges to the kth moment of a semi-circular operator. Hence x in
M2(A) is semi-circular. �
Lemma. Let A be a unital ∗-algebra and φ a state on A. Suppose
s1, s2, s3, s4, c1, c2, u ∈ A are ∗-free with s1, s2, s3, and s4 semi-circular,
c1 and c2 circular and u a Haar unitary. Let

x1 =

(
s1 c1

c∗1 s2

)
, x2 =

(
s3 c2

c∗2 s4

)
, x3 =

(
u 0
0 2u

)
Then x1, x2, x3 are ∗-free in M2(A) with state tr ⊗ φ.

Proof. We model x1 by X1, x2 by X2 and x3 by X3 where

X1 =

(
S1 C1

C∗
1 S2

)
, X2 =

(
S3 C2

C∗
2 S3

)
, X3 =

(
U 0
0 2U

)
and S1, S2, S3, S4 are N × N GUE random matrices, C1 C2 are N ×
N complex Gaussian random matrices and U is a diagonal constant
unitary matrix, chosen so that the entries of X1 are independent from
those of X2 and that the diagonal entries of U converge in distribution
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to the uniform distribution on the unit circle. Then X1, X2, X3 are
asymptotically free by Lecture 5. Thus x1, x2, and x3 are free because
they have the same distribution as the limiting distribution of X1, X2,
and X3. �

Proof of main theorem. We have shown the existence of four semi-circular
operators s1 s2, s3, s4, two circular operators c1, c2, and a Haar unitary
u in a von Neumann algebra M with trace τ such that

◦ s1, s2, s3, s4, c1, c2, u are ∗-free, and

◦ x1 =

(
s1 c1

c∗1 s2

)
, x2 =

(
s3 c2

c∗2 s4

)
, x3 =

(
u 0
0 2u

)
are ∗-free in

(M2(M), tr ⊗ τ)
◦ x1 and x2 are semi-circular and x3 has diffuse spectral measure.

Let N = W ∗(x1, x2, x3) ⊆ M2(M). Then N 
 L(F3) because x1, x2,
and x3 are free and diffuse. Also x3 has a spectral projection

p =

(
1 0
0 0

)
∈ N

Let c1 be such that

(
0 c1

0 0

)
= px1(1− p). The polar decomposition of

(
0 c1

0 0

)
is

(
0 v1

0 0

)
·
(

0 0
0 |c1|

)

where v1|c1| is the polar decomposition of c1 in M . Let

v =

(
0 v1

0 0

)
then v∗v =

(
0 0
0 1

)
and vv∗ =

(
1 0
0 0

)
= p

Claim: ∪3
i=1{pxip, pxiv

∗, vxip, vxiv
∗} generate pNp.

Consider for example pxi1xi2xi3p ∈ pNp. We have

pxi1xi2xi3p = pxi1(p · p + v∗v)xi2(p · p + v∗v) · xi3p

= pxi1p · pxi2(p · p + v∗v)xi3p

+ pxi1v
∗ · vxi2(p · p + v∗v)xi3p

= pxi1p · (pxi2p · pxi3p + pxi2v
∗ · vxi3p)

+pxi1v
∗(vxi2p · pxi3p + vxi2v

∗ · vxi3p)

is in the subalgebra generated by ∪3
i=1{pxip, pxiv

∗, vxip, vxiv
∗}.

In general we write pxi1 · · ·xinp as pxi11xi21 · · · 1xinp and replace
each 1 by p · p + v∗v.

Since v ∈ N , N = W ∗(x1, x2, x3) is generated by
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s1 0
0 0

) (
0 0
0 s2

) (
0 v1

0 0

) (
0 0
0 |c1|

) (
s3 0
0 0

)
(

0 0
0 s4

) (
0 v2

0 0

) (
0 0
0 |c2|

) (
u 0
0 0

) (
0 0
0 u

)

Thus pNp is generated by s1, s2, u, v1s2v
∗
1, v1s4v

∗
1, v1 |c1| v∗

1, v1 |c2| v∗
1,

v1uv∗
1, and v2v

∗
1. To check that this set is free we recall a few elementary

facts about freeness

Exercise.

i) if A1 and A2 free subalgebras of A, A11 and A12 are free sub-
algebras of A1, and A21 and A22 free subalgebras of A2; then
A11,A12,A21,A22 are free;

ii) if u is a Haar unitary free from A, then A is free from uAu∗;
iii) if v1 and v2 are Haar unitaries and v2 is free from {v1}∪A then

v2v
∗
1 is free from v1Av∗

1.

By construction

s1, s2, s3, s4, |c1|, |c2|, v1, v2, u

are free. Thus in particular

s3, s4, |c1|, |c2|, v2, u

are free. Hence by (ii)

v1s2v
∗
1, v1s4v

∗
1, v1|c1|v∗

1, v1|c1|v∗
1, v1uv∗

1

are free and, in addition, free from

u, s1, s3, v2

Thus

u, s1, s3, v1s2v
∗
1, v1s4v

∗
1, v1|c1|v∗

1, v1|c2|v∗
1, v1uv∗

1, v2

are free. Let A = alg(s1, s2, s3, s4, |c1|, |c2|, u). We have that v2 is free
from {v1} ∪ A, so by (iii), v2v

∗
1 is free from v1Av∗

1. Thus v2v
∗
1 is free

from

v1s2v
∗
1, v1s4v

∗
1, v1|c1|v∗

1, v1|c1|v∗
1, v1uv∗

1

and it was already free from s1, s3 and u. Thus by (i)

s1, s3, v1s2v
∗
1, v1s4v

∗
1, v1|c1|v∗

1, v1|c2|v∗
1, u, v1uv∗

1, v2v
∗
1

are free. Since they are diffuse and generate pNp, we have that pNp 

L(F9). Hence L(F3)1/2 
 L(F9). �
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The general case. We write L(Fn) = W ∗(x1, . . . , xn) where for 1 ≤
i ≤ n − 1 each xi is a semi-circular of the form

xi =
1√
k

⎛
⎜⎜⎜⎜⎝

s
(i)
1 c

(i)
12 . . . c

(i)
1k

c
(i)
12

∗ . . .
...

...
. . . c

(i)
k−1,k

c
(i)
1k

∗ · · · · · · s
(i)
k

⎞
⎟⎟⎟⎟⎠ and xn =

⎛
⎜⎜⎝

u
2u

. . .
ku

⎞
⎟⎟⎠

with s
(i)
j semi-circular, c

(i)
i circular, and u a Haar unitary, so that

{s(i)
j }i,j ∪ {c(i)

j }i,j ∪ {u} are ∗-free.
So we have (n−1)k semi-circular operators, (n−1)

(
k
2

)
circular oper-

ators and one Haar unitary. Each circular operator produces two free
elements so we have in total

(n − 1)k + 2(n − 1)

(
k

2

)
+ 1 = (n − 1)k2 + 1

free and diffuse generators. Thus L(Fn)1/k 
 L(Fm) where m−1
n−1

= k2.


