FREE PROBABILITY AND RANDOM MATRICES

Lecture 4: Free Harmonic Analysis, October 4, 2007

The Cauchy Transform. Let $\mathbb{C}^+ = \{z \in \mathbb{C} \mid \text{Im}(z) > 0\}$ denote the complex upper half plane, and $\mathbb{C}^- = \{z \mid \text{Im}(z) < 0\}$ denote the lower half plane. Let ν be a probability measure on \mathbb{R} and for $z \notin \mathbb{R}$ let

$$G(z) = \int_{\mathbb{R}} \frac{1}{z-t} \, d\nu(t)$$

G is the Cauchy transform of the measure ν . Let us briefly check that the integral converges to an analytic function on \mathbb{C}^+ .

Lemma. G is an analytic function on \mathbb{C}^+ with range contained in \mathbb{C}^- .

Since $|z-t|^{-1} \leq |\text{Im}(z)|^{-1}$ and ν is a probability measure the integral is always convergent. If $\text{Im}(w) \neq 0$ and |z-w| < |Im(w)|/2 then for $t \in \mathbb{R}$ we have

$$\left|\frac{z-w}{t-w}\right| < \frac{|\mathrm{Im}(w)|}{2} \cdot \frac{1}{|\mathrm{Im}(w)|} = \frac{1}{2}$$

so the series $\sum_{n=0}^{\infty} (\frac{z-w}{t-w})^n$ converges uniformly to $\frac{t-w}{t-z}$ on $|z-w| < |\mathrm{Im}(w)|/2$. Thus $(z-t)^{-1} = -\sum_{n=0}^{\infty} (t-w)^{-(n+1)}(z-w)^n$ on $|z-w| < |\mathrm{Im}(w)|/2$. Hence

$$G(z) = -\sum_{n=0}^{\infty} \left[\int_{\mathbb{R}} (t-w)^{-(n+1)} d\nu(t) \right] (z-w)^n$$

is analytic on |z - w| < |Im(w)|/2.

Finally note that for $\operatorname{Im}(z) > 0$, we have for $t \in \mathbb{R}$, $\operatorname{Im}((z-t)^{-1}) < 0$, and hence $\operatorname{Im}(G(z)) < 0$. Thus G maps \mathbb{C}^+ into \mathbb{C}^- . \Box

Lemma. (i) $\lim_{y \to \infty} y G(iy) = -i$ and (ii) $\sup_{y \ge 0, x \in \mathbb{R}} y |G(x + iy)| = 1$

Proof. (i)

$$y \operatorname{Im}(G(iy)) = \int_{\mathbb{R}} y \operatorname{Im}\left(\frac{1}{iy-t}\right) d\nu(t) = \int_{\mathbb{R}} \frac{-y^2}{y^2+t^2} d\nu(t)$$
$$= -\int_{\mathbb{R}} \frac{1}{1+(t/y)^2} d\nu(t) \to -\int_{\mathbb{R}} d\nu(t)$$

where $y \to \infty$ and since $(1 + (t/y)^2)^{-1} \le 1$ we may apply Lebesgue's Dominated Convergence Theorem.

We have $y \operatorname{Re}(G(iy)) = \int_{\mathbb{R}} \frac{-yt}{y^2 + t^2} d\nu(t)$. But for all y > 0 and for all t $\left|\frac{yt}{y^2 + t^2}\right| \le \frac{1}{2}$

and $|yt/(y^2 + t^2)|$ converges to 0 as $y \to \infty$. Therefore $y \operatorname{Re}(G(iy) \to 0$ as $y \to \infty$, again by the Dominated Convergence Theorem.

(*ii*) For y > 0 and z = x + iy,

$$y|G(z)| \le \int_{\mathbb{R}} \frac{y}{|z-t|} d\nu(t) = \int_{\mathbb{R}} \frac{y}{\sqrt{(x-t)^2 + y^2}} d\nu(t) \le 1$$

Thus $\sup_{y \ge 0, x \in \mathbb{R}} y |G(x + iy)| \le 1$. By (i) however, the supremum is 1. \Box

Theorem. Suppose a < b. Then

$$\lim_{y \to 0^+} \frac{-1}{\pi} \int_a^b \operatorname{Im}(G(x+iy)) \, dx = \nu((a,b)) + \frac{1}{2}\nu(\{a,b\})$$

If ν_1 and ν_2 are probability measures with $G_{\nu_1} = G_{\nu_2}$, then $\nu_1 = \nu_2$.

Proof. We have

$$\operatorname{Im}(G(x+iy)) = \int_{\mathbb{R}} \operatorname{Im}\left(\frac{1}{x-t+iy}\right) d\nu(t) = \int_{\mathbb{R}} \frac{-y}{(x-t)^2 + y^2} d\nu(t)$$

Thus

$$\begin{aligned} \int_{a}^{b} \operatorname{Im}(G(x+iy)) \, dx &= \int_{\mathbb{R}} \int_{a}^{b} \frac{-y}{(x-t)^{2} + y^{2}} \, dx \, d\nu(t) \\ &= -\int_{\mathbb{R}} \int_{(a-t)/y}^{(b-t)/y} \frac{1}{1+\tilde{x}^{2}} \, d\tilde{x} \, d\nu(t) \\ &= -\int_{\mathbb{R}} \tan^{-1}\left(\frac{b-t}{y}\right) - \tan^{-1}\left(\frac{a-t}{y}\right) d\nu(t) \end{aligned}$$

where we have let $\tilde{x} = (x-t)/y$. So let $f(y,t) = \tan^{-1}((b-t)/y) - \tan^{-1}((a-t)/y)$ and

$$f(t) = \begin{cases} 0 & t \notin [a, b] \\ \pi/2 & t \in \{a, b\} \\ \pi & t \in (a, b) \end{cases}$$

Then $\lim_{y\to 0^+} f(y,t) = f(t)$, and, for all y > 0 and for all t, we have $|f(y,t)| \leq \pi$. So by Lebesgue's Dominated Convergence Theorem

$$\lim_{y \to 0^+} \int_a^b \operatorname{Im}(G(x+iy)) \, dx = -\lim_{y \to 0^+} \int_{\mathbb{R}} f(y,t) \, d\nu(t)$$
$$= -\int_{\mathbb{R}} f(t) \, d\nu(t) = -\pi \Big(\nu((a,b)) + \frac{1}{2}\nu(\{a,b\})\Big)$$

This proves the first claim. The first claim shows that if $G_{\nu_1} = G_{\nu_2}$ then ν_1 and nu_2 agree on all intervals and thus are equal.

Remark. The proof of the next theorem depends on a fundamental result of R. Nevalinna which provides an integral representation for an analytic function from \mathbb{C}^+ to \mathbb{C}^+ . Suppose that $\phi : \mathbb{C}^+ \to \mathbb{C}^+$ is analytic, then there is a unique Borel measure σ on \mathbb{R} and real numbers α and β , with $\beta \geq 0$ such that for $z \in \mathbb{C}^+$

$$\phi(z) = \alpha + \beta z + \int_{\mathbb{R}} \frac{1}{t - z} \, d\sigma(t)$$

This integral representation is achieved by letting $\xi = \frac{iz+1}{iz-1}$, and thus $z = i\frac{1+\xi}{1-\xi}$. Then one defines ψ by $\psi(\xi) = i\phi(z)$ and obtains an analytic function ψ mapping the open unit disc, \mathbb{D} , into the complex right half plane. Since ψ the real and imaginary parts of ψ are harmonic conjugates, it is enough to work with the real part. Now $\operatorname{Re}(\psi)$ is a positive harmonic function on \mathbb{D} ; when $\operatorname{Re}(\psi)$ is harmonic on an open set containing $\overline{\mathbb{D}}$ one gets the measure from Cauchy's Integral Theorem; in general one dilates $\operatorname{Re}(\psi)$ to get a harmonic function on $\overline{\mathbb{D}}$, and then takes a limit as the dilation shrinks to $\operatorname{Re}(\psi)$. This integral representation is usually attributed to G. Herglotz (1911). The details can be found in the book of Akhiezer and Glazman¹.

Theorem (R. Nevanlinna). Suppose $G : \mathbb{C}^+ \to \mathbb{C}^-$ is analytic and $\sup y |G(x + iy)| = 1$. Then there is a unique probability measure on \mathbb{R} such that $G(z) = \int_{\mathbb{R}} \frac{1}{z-t} d\nu(t)$.

Proof. By the remark above there is a unique finite measure on \mathbb{R} such that $G(z) = \alpha + \beta z + \int \frac{1+tz}{z-t} d\sigma(t)$ with $\alpha \in \mathbb{R}$ and $\beta \leq 0$.

Next we will use the condition

(1)
$$\sup_{y>0, x\in\mathbb{R}} y |G(x+iy)| = 1$$

Considering first the imaginary part we get that $\beta = 0$ and for all N, $\int_{-N}^{N} \frac{y^2}{t^2+y^2}(1+t^2) d\sigma(t) \leq 1$. Thus $\int_{\mathbb{R}} (1+t^2) d\sigma(t) \leq 1$. Let

¹N. I. Akhiezer and I. M. Glazman, *Theory of Linear Operators in Hilbert Space* (1961), vol. 2, Ch. VI, §58

 $\nu(E)=\int_E 1+t^2d\sigma(t).$ From the real part of (1) we get that for all y>0

$$y \left| \alpha + \int_{\mathbb{R}} \frac{t(y^2 - 1)}{t^2 + y^2} d\nu(t) \right| \le 1$$

Therefore

$$\alpha = \lim_{y \to \infty} \int_{\mathbb{R}} \frac{t(1-y^2)}{t^2 + y^2} d\sigma(t)$$
$$= -\lim_{y \to \infty} \int_{\mathbb{R}} t \frac{1-y^{-2}}{1 + (t/y)^2} d\sigma(t) = -\int t d\sigma(t)$$

Hence

$$G(z) = \int -t + \frac{1+tz}{z-t} d\sigma(t) = \int \frac{-tz+t^2+1+tz}{z-t} d\sigma(t)$$

= $\int_{\mathbb{R}} \frac{1}{z-t} (1+t^2) d\sigma(t) = \int_{\mathbb{R}} \frac{1}{z-t} d\nu(t)$

Remark. If $\{\nu_n\}_n$ is a sequence of finite Borel measures on \mathbb{R} we say that $\{\nu_n\}_n$ converges in distribution to the measure ν if for every $f \in C_b(\mathbb{R})$ (the continuous bounded functions on \mathbb{R}) we have $\lim_n \int f(t) d\nu_n(t) \to \int f(t) d\nu(t)$. We say that $\{\nu_n\}_n$ converges vaguely to ν if for every $f \in C_0(\mathbb{R})$ (the continuous functions on \mathbb{R} vanishing at infinity) we have $\lim_n \int f(t) d\nu_n(t) \to \int f(t) d\nu(t)$. Convergence in distribution implies vague convergence but not conversely. However if ν is a probability measure then $\{\nu_n\}_n$ converges vaguely to ν does imply that $\{\nu_n\}_n$ converges to ν in distribution².

Theorem. Suppose that $(\nu_n)_n$ is a sequence of probability measures on \mathbb{R} with G_n the Cauchy transform of ν_n . Suppose $\{G_n\}_n$ converges pointwise to G on \mathbb{C}^+ . If $\lim_{y\to\infty} y G(iy) = -i$ then there is a unique probability measure ν on \mathbb{R} such that $\nu_n \to \nu$ in distribution, and $G(z) = \int \frac{1}{z-t} d\nu(t).$

Proof. $\{G_n\}_n$ is uniformly bounded on compact subsets of \mathbb{C}^+ (as $|G(z)| \leq |\mathrm{Im}(z)|^{-1}$ for the Cauchy transform of any probability measure), so by Montel's theorem $\{G_n\}_n$ is relatively compact in the topology of uniform convergence on compact subsets of \mathbb{C}^+ , thus, in particular, $\{G_n\}_n$ has a subsequence which converges uniformly on compact subsets of \mathbb{C}^+ to an analytic function, which must be G. Thus G is analytic, as it is the uniform limit of analytic functions. Now for $z \in \mathbb{C}^+$, $G(z) \in \overline{\mathbb{C}^-}$. Also for each $n \in \mathbb{N}$, $x \in \mathbb{R}$ and $y \geq 0$ y $|G_n(x+iy)| \leq 1$.

 $^{^2 \}mathrm{see}$ Kai Lai Chung Probability, 2^{nd} ed. (1984) §3.3 and 3.4.

Thus $\forall x \in \mathbb{R}, \forall y \geq 0, y | G(x+iy) | \leq 1$. So in particular, G is nonconstant. If for some $z \in \mathbb{C}^+$, $\operatorname{Im}(G(z)) = 0$ then by the minimum modulus principle G would be constant. Thus G maps \mathbb{C}^+ into \mathbb{C}^- . Hence by Nevanlinna's theorem there is a unique probability measure ν such that $G(z) = \int_{\mathbb{R}} \frac{1}{z-t} d\nu(t)$.

Now by the Helley selection theorem³ there is a subsequence $\{\nu_{n_k}\}_k$ converging vaguely to some measure $\tilde{\nu}$. For fixed z the function $t \mapsto 1/(z-t)$ is in $C_0(\mathbb{R})$. Thus for $\operatorname{Im}(z) > 0$, $G_{n_k}(z) = \int_{\mathbb{R}} \frac{1}{z-t} d\nu_{n_k}(t) \to \int_{\mathbb{R}} \frac{1}{z-t} d\tilde{\nu}(t)$. Therefore $G(z) = \int \frac{1}{z-t} d\nu(t)$ i.e. $\nu = \tilde{\nu}$. Thus $\{\nu_{n_k}\}_k$ converges vaguely to ν . Since ν is a probability measure $\{\nu_{n_k}\}_k$ converges vaguely to ν . Thus $\{\nu_n\}$ converges in distribution to ν .

Corollary. If $\{\nu_n\}_n$ is a sequence of probability measures on \mathbb{R} with $G_n \to G$ pointwise on \mathbb{C}^+ . Then $\{\nu_n\}$ converges vaguely to a finite measure ν .

The analytic relation between moments and free cumulants involves finding a functional inverse for the Cauchy transform of a probability measure, ν . One cannot do this in general without making some assumptions about ν . A fairly general condition was found by Hans Maassen in 1992⁴

Theorem (H. Maassen). Let ν be a probability measure on \mathbb{R} with $\sigma^2 = \int_{-\mathbb{R}} t^2 d\nu(t) < \infty$ and $\int t d\nu(t) = 0$. Then G is a bijection between

$$\{z \mid \operatorname{Im}(z) > \sigma\} \text{ and } \{\frac{1}{z} \mid \operatorname{Im}(z) > 2\sigma\}$$

Compactly Supported Measures. When the probability measure ν has compact support then one can find a region in \mathbb{C}^+ upon which the Cauchy transform is univalent.

Suppose ν is a probability measure on \mathbb{R} and $\operatorname{supp}(\nu) \subseteq [-r, r]$. Then ν has moments $m_n = \int t^n d\nu(t)$ of all orders and $|m_n| \leq r^n$. Let $M(z) = 1 + m_1 z + m_2 z + \cdots$ be the moment generating function. If

³E. Lukacs, *Characteristic Functions*, 2nd ed., Griffin, 1972

⁴Addition of Freely Independent Random Variables, *J. Funct. Anal.*, **106** (1992), 409-438.

 $|z| < r^{-1}$ the series converges. If |z| > r then $|z^{-1}| < r^{-1}$ and

$$G(z) = \int_{\mathbb{R}} \frac{1}{z - t} d\nu(t) = \frac{1}{z} \int_{\mathbb{R}} \sum_{n \ge 0} z^{-n} t^n d\nu(t)$$

= $\frac{1}{z} \sum_{n \ge 0} z^{-n} \int_{\mathbb{R}} t^n d\nu(t) = \frac{1}{z} \sum_{n \ge 0} z^{-n} m_n = \frac{1}{z} M\left(\frac{1}{z}\right)$

Let $f(z) = zM(z) = G(\frac{1}{z}) = z + m_1 z^2 + m_2 z^3 + \cdots$. Then f(0) = 0and f'(0) = 1. Suppose $|z_1|, |z_2| \le (4r)^{-1}$ then

$$\left| \frac{f(z_1) - f(z_2)}{z_1 - z_2} \right| \geq \operatorname{Re}\left(\frac{f(z_1) - f(z_2)}{z_1 - z_2}\right)$$
$$= \operatorname{Re}\int_0^1 \frac{d}{dt} \left[\frac{f(z_1 + t(z_2 - z_1))}{z_2 - z_1} \right] dt$$
$$= \int_0^1 \operatorname{Re}(f'(z_1 + t(z_2 - z_1))) dt$$

Now

$$\operatorname{Re}(f'(z)) = \operatorname{Re}(1 + 2zm_1 + 3x^2m_2 + \cdots)$$

$$\geq 1 - 2|z|r - 3|z|^2r^2 - \cdots$$

$$= 2 - (1 + 2(|z|r) + 3(|z|r)^2 + \cdots) = 2 - \frac{1}{(1 - |z|r)^2}$$

So for $|z| < (4r)^{-1}$ we have

$$\operatorname{Re}(f'(z)) \ge 2 - \frac{1}{(1 - 1/4)^2} = \frac{2}{9}$$

Hence for $|z_1|, |z_2| < (4r)^{-1}$ we have $|f(z_1) - f(z_2)| \ge \frac{2}{9}|z_1 - z_2|$. In particular f is one-to-one on $\{z \mid |z| < (4r)^{-1}\}$. Also

$$|f(z)| = |z| |1 + m_1 z + m_2 z^2 + \dots |$$

$$\geq |z| (2 - (1 + r|z| + r^2 |z|^2 + \dots)) = |z| \left(2 - \frac{1}{1 - r|z|}\right)$$

$$\geq |z| \left(2 - \frac{1}{1 - 1/4}\right) = \frac{2}{3}|z|$$

Thus for $|z| = (4r)^{-1}$ we have $|f(z)| \ge (6r)^{-1}$. Moreover, since f is one-to-one on $\{z \mid |z| \ge (4r)^{-1}\}$, the curve $\gamma = \{f(e^{it}/(4r)) \mid 0 \le t \le 2\pi\}$ only wraps once around the origin.

Thus f maps $\{z \mid |z| < (4r)^{-1}\}$ to the interior of the curve γ . Hence $\{z \mid |z| < (6r)^{-1}\} \subseteq \{f(z) \mid |z| < (4r)^{-1}\}$ We will denote the inverse of f under composition by $f^{\langle -1 \rangle}$. Thus $f^{\langle -1 \rangle}$ is analytic on $\{z \mid |z| < (6r)^{-1}\}$ and has a simple zero at z = 0. Thus

$$K(z) = \frac{1}{f^{\langle -1 \rangle}(z)}$$

is meromorphic on $\{z \mid |z| < (6r)^{-1}\}$ and has a simple pole at z = 0. Now

$$K(G(z)) = 1/(f^{\langle -1 \rangle}(G(z))) = 1/(f^{\langle -1 \rangle}(f(z^{-1}))) = z$$

and $G(K(z)) = f(f^{\langle -1 \rangle}(z)) = z$.

Theorem. Suppose $\operatorname{supp}(\nu) \subset [-r, r]$, then G_{ν} is univalent on the open disc with centre 0 and radius $(6r)^{-1}$

Let
$$R(z) = K(z) - \frac{1}{z}$$
. Then R is analytic on $\{z \mid |z| < (6r)^{-1}\}$, and
 $G\left(\frac{1}{z} + R(z)\right) = z = R(G(z)) + \frac{1}{G(z)}$

which is the same relation as was found combinatorially.

Bercovici and Voiculescu found a theorem that relates convergence in distribution of a sequence of probability measures with support in [-r, r] to the uniform convergence of the corresponding *R*-transforms on a disc.

Theorem (Bercovici & Voiculescu). Let $\{\nu_n\}_n$ be a sequence of probability measures on \mathbb{R} with compact support, let R_n be the corresponding sequence of *R*-transforms. Then

i) $\exists r \ s.t. \ \operatorname{supp}(\nu_n) \subseteq [-r,r] \ and \ \nu \ with \ \operatorname{supp}(\nu) \subseteq [-r,r] \ such \ that$ $\nu_n \xrightarrow{\mathcal{D}} \nu$

if and only if

ii) $\exists s > 0$ such that $\{R_n\}_n$ converges uniformly on $\{z \mid |z| < s\}$ to an analytic function R on $\{z \mid |z| < s\}$.

Example: The Semi-circle Law. As an example of Stieltjes inversion let us take a familiar example and calculate its Cauchy transform and then using only the Cauchy transform find the density by using Stieltjes inversion. The density of the semi-circle law is given by

$$\frac{d\nu}{dt} = \frac{\sqrt{4-t^2}}{2\pi} s \, dt$$
 on $[-2,2]$

the moments are given by

$$m_n = \int_{-2}^{2} t^n d\nu(t) = \begin{cases} 0 & n \text{ odd} \\ c_{n/2} & n \text{ even} \end{cases}$$

where the c_n 's are the Catalan numbers:

$$c_n = \frac{1}{n+1} \binom{2n}{n}$$

Now let M(z) be the moment generating function

$$M(z) = 1 + c_1 z^2 + c_2 z^4 + \cdots$$

then

$$M(z)^{2} = \sum_{m,n \ge 0} c_{m} c_{n} z^{2(m+n)} = \sum_{k \ge 0} \left(\sum_{m+n=k} c_{m} c_{n} \right) z^{2k}$$

Now we saw in lecture three that

$$\sum_{m+n=k} c_m c_n = c_{k+1}$$

 \mathbf{SO}

$$M(z)^{2} = \sum_{k \ge 0} c_{k+1} z^{2k} = \frac{1}{z^{2}} \sum_{k \ge 0} c_{k+1} z^{2(k+1)}$$

therefore

$$z^{2}M(z)^{2} = M(z) - 1$$
 or $M(z) = 1 + z^{2}M(z)^{2}$

Therefore $z^2 M(z)^2 - M(z) + 1 = 0$. Solving the quadratic equation we have

$$M(z) = \frac{1 \pm \sqrt{1 - 4z^2}}{2z^2}$$
 and $M(0) = 1$

Now

$$\frac{1+\sqrt{1-4t^2}}{2t^2} \to \infty \text{ as } t \to 0,$$

whereas

$$\frac{1 - \sqrt{1 - 4t^2}}{2t^2} = \frac{2}{1 + \sqrt{1 - 4t^2}} \to 1 \text{ as } t \to 0$$

Therefore we choose the minus sign

$$M(z)=\frac{1-\sqrt{1-4z^2}}{2z^2}$$

Now

$$G(z) = \frac{1}{z}M\left(\frac{1}{z}\right) = \frac{1}{z} \cdot \frac{1 - \sqrt{1 - 4z^{-2}}}{2z^{-2}} = \frac{z - \sqrt{z^2 - 4}}{2}$$

Also $1 + z^2 M(z)^2 = M(z)$ implies

$$1 + \left(\frac{1}{z}M\left(\frac{1}{z}\right)\right)^2 = z\left(\frac{1}{z}M(z)\right)$$

i.e.

$$1 + G(z)^2 = zG(z)$$
 or $z = G(z) + \frac{1}{G(z)}$

Thus $K(z) = z + \frac{1}{z}$ and R(z) = z i.e. all so all cumulants of the semi-circle law are 0 except κ_2 , which equals 1.

Now let us apply Stieltjes inversion to G(z). To do this we have to choose a branch of $\sqrt{z^2 - 4}$. To achieve this we choose a branch for each of $\sqrt{z - 2}$ and $\sqrt{z + 2}$. Now $\sqrt{z - 2} = |z - 2|^{1/2} e^{i\theta/2}$ where θ is the argument of z - 2. Choosing a branch means connecting 2 to ∞ with a curve along which θ will have a jump discontinuity.

We choose θ_1 , the argument of z - 2, to be such that $0 \le \theta_1 < 2\pi$. Similarly we choose θ_2 , the argument of z + 2, such that $0 \le \theta_2 < 2\pi$. Thus $\theta_1 + \theta_2$ is continuous on $\mathbb{C} \setminus [-2, \infty)$. However $e^{i(\theta_1 + \theta_2)/2}$ is continuous on $\mathbb{C} \setminus [-2, 2]$ because $e^{i(0+0)/2} = 1 = e^{i(2\pi + 2\pi)/2}$, so there is no jump as the half line $[2, \infty)$ is crossed.

Now

$$\begin{split} \sqrt{z^2 - 4} &= \sqrt{z - 2}\sqrt{z + 2} = \left|z^2 - 4\right|^{1/2} e^{i\theta_1/2} e^{i\theta_2/2} = \left|z^2 - 4\right|^{1/2} e^{i(\theta_1 + \theta_2)/2} \\ \operatorname{Im}(\sqrt{(x + iy)^2 - 4}) &= \left|(x + iy)^2 - 4\right|^{1/2} \sin((\theta_1 + \theta_2)/2) \\ \\ \lim_{y \to 0} \operatorname{Im}(\sqrt{(x + iy)^2 - 4}) &= \left|x^2 - 4\right|^{1/2} \begin{cases} 0 & |x| > 2 \\ 1 & |x| < 2 \end{cases} \\ &= \begin{cases} 0 & |x| > 0 \\ \sqrt{4 - x^2} & |x| < 2 \end{cases} \\ \\ \lim_{y \to 0^+} \operatorname{Im}(G(x + iy)) &= \lim_{y \to 0^+} \operatorname{Im}\left(\frac{x + iy - \sqrt{(x + iy)^2 - 4}}{2}\right) \\ &= \begin{cases} 0 & |x| > 2 \\ -\sqrt{4 - x^2} & |x| < 2 \end{cases} \end{split}$$

Therefore

$$\lim_{y \to 0^+} \frac{-1}{\pi} \operatorname{Im}(G(x+iy)) = \begin{cases} 0 & |x| > 2\\ \frac{\sqrt{4-x^2}}{2\pi} & |x| < 2 \end{cases}$$

Hence we recover our original density.

Stieltjes Inversion at an Atom. When the Cauchy transform has a pole at $a \in \mathbb{R}$ the limit calculation using the dominated convergence theorem used above will not apply. A situation that frequently occurs is that G(z) has a simple pole at a, i.e. G(z) = f(a)/(z-a) with fanalytic on a neighbourhood of a, then ν has an atom at a with weight f(a).

Theorem. Suppose G(z) = f(z)/(z-a) with a a real number and f analytic on a neighbourhood, B(a, 2r), of a. Then

$$\lim_{y \to 0^+} \frac{-1}{\pi} \int_{a-r}^{a+r} \operatorname{Im}(G(x+iy)) \, dx = f(a)$$

Proof. Let C be the boundary of the rectangle with vertices at a+y+ir, a-y+ir, a-y-ir, and a+y-ir. We will parameterize the four sides as follows.

 C_1 : the top side; $\gamma_1(t) = t + iy$ where t decreases from a + r to a - r;

- C_2 : the left side; $\gamma_2 = a r + it$ where t decreases from y to -y;
- C_3 : the bottom side; $\gamma_3(t) = t iy$ where t increases from a r to a + r

 C_4 : the right side; $\gamma_4(t) = a + r + it$ where t increases from -y to y Then by Cauchy's integral theorem

$$\frac{1}{2\pi i} \int_C \frac{f(z)}{z-a} \, dz = f(a)$$

10

So let us calculate separately each integral over C_i . Now

$$\int_{C_1} G(z) \, dz = \int_{a+r}^{a-r} G(x+iy) \text{ and } \int_{C_3} G(z) \, dz = \int_{a-r}^{a+r} G(x-iy)$$

Thus

$$\int_{C_1+C_3} G(z) \, dz = \int_{a-r}^{a+r} G(x-i\delta) - G(x+iy) \, dx$$
$$= -\int_{a-r}^{a+r} 2i \operatorname{Im}(G(x+iy)) \, dx$$

Thus

$$\int_{a-r}^{a+r} \frac{-1}{\pi} \operatorname{Im}(G(x+iy)) \, dx = \frac{1}{2\pi i} \int_{C_1+C_3} G(z) \, dz$$

So we only need to prove that for i = 2 or 4

$$\lim_{y \to 0^+} \int_{C_i} G(z) \, dz = 0$$

we shall only do the case i = 2. Since f is analytic on B(0, r) there is M > 0 such that $|f(z)| \leq M$ for $z \in C_2$. Thus

$$\left| \int_{C_2} G(z) \, dz \right| \le \int_{-y}^{y} \frac{2M}{|r - it|} \, dt \le \frac{2My}{r}$$

Thus for i = 2 and 4

$$\lim_{y \to 0^+} \int_{C_i} G(z) \, dz = 0$$