FREE PROBABILITY AND RANDOM MATRICES

Lectures given at the Fields Institute

Lecture 1: September 13, 2007

Moments and Cumulants of Random Variables

Let ν be a probability measure on \mathbb{R}. If $\int_{\mathbb{R}}|t|^{k} d \nu(t)<\infty$ we say that ν has a moment of order k, the $k^{t h}$ moment is denoted $\alpha_{k}=\int_{\mathbb{R}} t^{k} d \nu(t)$.
Exercise 1. If ν has a moment of order k then ν has all moments of order m for $m<k$.

The integral $\phi(t)=\int e^{i s t} d \nu(t)$ is always convergent and is called the characteristic function of ν. It is always uniformly continuous on \mathbb{R} and $\phi(0)=1$, so for $|t|$ small enough $\phi(t) \notin(-\infty, 0]$ and we can define the continuous function $\log (\phi(t))$. If ν has a moment of order k then ϕ has a derivative of order k, and conversely. Moreover $\alpha_{k}=i^{-k} \phi^{(k)}(0)$, so at the level of formal power series $\phi(t)=\sum_{k \geq 0} \alpha_{k} \frac{(i t)^{k}}{k!}$. Thus if ν has a moment of order k we can write $\log (\phi(t))=\sum_{j=0}^{k} k_{j} \frac{(i t)^{j}}{j!}+o\left(t^{k}\right)$ with

$$
k_{j}=\left.i^{-j} \frac{d^{j}}{d t^{j}} \log (\phi(t))\right|_{t=0}
$$

The numbers $\left(k_{j}\right)$ are the cumulants of ν. To distinguish them from the free cumulants which will be defined below, we will call $\left(k_{j}\right)$ the classical cumulants of ν. The moments $\left(\alpha_{j}\right)_{j}$ of ν and the cumulants $\left(k_{j}\right)$ of ν each determine the other through the moment-cumulant formulas:

$$
\begin{gathered}
k_{n}=\sum_{\substack{1 \cdot r_{1}+\cdots+n \cdot r_{n}=n \\
r_{1}, \ldots, r_{n} \geq 0 \\
r=r_{1}+\cdots+r_{n}}}(-1)^{r-1}(r-1)!\frac{n!}{(1!)^{r_{1} \cdots(n!)^{r_{n}} r_{1}!\cdots r_{n}!} \alpha_{1}^{r_{1}} \cdots \alpha_{n}^{r_{n}}} \\
\alpha_{n}=\sum_{\substack{1 \cdot r_{1}+\cdots+n r_{n}=n \\
r_{1}, \ldots, r_{n} \geq 0}} \frac{n!}{(1!)^{r_{1} \cdots(n!)^{r_{n}} r_{1}!\cdots r_{n}!} k_{1}^{r_{1}} \cdots k_{n}^{r_{n}}}
\end{gathered}
$$

We shall see below how to use partitions to simplify these equations.

A very important random variable is the Gaussian or normal random variable. It has the distribution $P\left(t_{1} \leq X \leq t_{2}\right)=\int_{t_{1}}^{t_{2}} \frac{e^{-(t-a)^{2} /\left(2 \sigma^{2}\right)}}{\sqrt{2 \pi \sigma^{2}}} d t$ where a is the mean and σ^{2} is the variance. The characteristic function of a Gaussian random variable is $\phi(t)=\exp \left(\right.$ iat $\left.-\frac{\sigma^{2} t^{2}}{2}\right)$. Thus $\log \phi(t)=$ $a \frac{(i t)^{1}}{1!}+\sigma^{2} \frac{(i t)^{2}}{2!}$. Hence for a Gaussian random variable all cumulants beyond the second are 0 .

Exercise 2. Suppose ν has a fourth moment and we write $\phi(t)=$ $1+\alpha_{1} \frac{(i t)}{1!}+\alpha_{2} \frac{(i t)^{2}}{2!}+\alpha_{3} \frac{(i t)^{3}}{3!}+\alpha_{4} \frac{(i t)^{4}}{4!}+o\left(t^{4}\right)$ where $\alpha_{1}, \alpha_{2}, \alpha_{3}$, and α_{4} are the first four moments of ν. Let $\log (\phi(t))=k_{1}(i t)+k_{2} \frac{(i t)^{2}}{2!}+k_{3} \frac{(i t)^{3}}{3!}+$ $k_{4} \frac{(i t)^{4}}{4!}+o\left(t^{4}\right)$. Using the Taylor series for $\log (1+x)$ find a formula for $\alpha_{1}, \alpha_{2}, \alpha_{3}$, and α_{4} in terms of k_{1}, k_{2}, k_{3}, and k_{4}.

Moments of a Gaussian Random Variable. Let X be a Gaussian random variable with mean 0 and variance 1 . Then

$$
P\left(t_{1} \leq X \leq t_{2}\right)=\int_{t_{1}}^{t_{2}} e^{-t^{2} / 2} \frac{d t}{\sqrt{2 \pi}} .
$$

Let us find the moments of $X . \alpha_{1}=0, \alpha_{2}=1$, and by integration by parts $\alpha_{k}=\mathrm{E}\left(X^{k}\right)=\int_{\mathbb{R}} t^{k} e^{-t^{2} / 2} \frac{d t}{\sqrt{2 \pi}}=(k-1) \alpha_{k-2}$ for $k \geq 3$. Thus $\alpha_{2 k}=(2 k-1)(2 k-3) \cdots 5 \cdot 3 \cdot 3 \cdot 1=(2 k-1)!!$ and $\alpha_{2 k-1}=0$ for all k.

Let us find a combinatorial interpretation of these numbers. For a positive integer n let $[n]=\{1,2,3, \ldots, n\}$, and $\mathcal{P}(n)$ denote all partitions of the set [n] i.e. $\pi=\left\{V_{1}, \ldots, V_{k}\right\} \in \mathcal{P}(n)$ means $V_{1}, \ldots, V_{k} \subseteq[n]$, $V_{1} \cup \cdots \cup V_{k}=[n]$, and $V_{i} \cap V_{j}=\emptyset$ for $i \neq j ; V_{1}, \ldots, V_{k}$ are called the blocks of π. We let $\#(\pi)$ denote the number of blocks of π and $\#\left(V_{i}\right)$ the number of elements in the block V_{i}. A partition is a pairing if each block has size 2 . The pairings of $[n]$ will be denoted $\mathcal{P}_{2}(n)$.

Let us count the number of pairings of $[n] .1$ must be paired with something and there are $n-1$ ways of choosing it. Thus $\#\left(\mathcal{P}_{2}(n)\right)=$ $(n-1) \#\left(\mathcal{P}_{2}(n-2)\right)=(n-1)!$!. So $\mathrm{E}\left(X^{2 n}\right)=\#\left(\mathcal{P}_{2}(2 n)\right)$, but the analogy runs deeper and is known as Wick's formula.

Gaussian vectors. Let $\vec{X}: \Omega \rightarrow \mathbb{R}^{n}, \vec{X}=\left(X_{1}, \ldots, X_{n}\right)$ be a random vector. We say that \vec{X} is Gaussian if there is a positive definite $n \times n$ real matrix B such that

$$
\mathrm{E}\left(X_{i_{1}} \cdots X_{i_{k}}\right)=\int_{\mathbb{R}^{n}} t_{i_{1}} \cdots t_{i_{k}} \frac{\exp \frac{-1}{2}\langle B \vec{t}, \vec{t}\rangle d \vec{t}}{(2 \pi)^{n / 2} \operatorname{det}(B)^{-1 / 2}}
$$

where $\langle\cdot, \cdot\rangle$ denotes the standard inner product on \mathbb{R}^{n}. Let $C=\left(c_{i j}\right)$ be the covariance matrix, that is $c_{i j}=\mathrm{E}\left(\left[X_{i}-\mathrm{E}\left(X_{i}\right)\right]\left[X_{j}-\mathrm{E}\left(X_{j}\right)\right]\right)$. In
fact $C=B^{-1}$ and if X_{i}, \ldots, X_{n} are independent then B is a diagonal matrix, see Exercise 3. If Y_{1}, \ldots, Y_{k} are independent Gaussian random variables and $\vec{X}=A \vec{Y}$, then \vec{X} is a Gaussian random vector and every Gaussian random vector is obtained in this way. If $\vec{X}=\left(X_{1}, \ldots, X_{n}\right)$ is a complex random vector we say that \vec{X} is a complex Gaussian random vector if $\left(\operatorname{Re}\left(X_{1}\right), \operatorname{Im}\left(X_{1}\right), \ldots, \operatorname{Re}\left(X_{n}\right), \operatorname{Im}\left(X_{n}\right)\right)$ is a real Gaussian random vector.
Exercise 3. Let $\vec{X}=\left(X_{1}, \ldots, X_{n}\right)$ be a Gaussian random vector with density $\frac{\exp \left(-\frac{1}{2}\langle B \vec{t}, \vec{t}\rangle\right)}{(2 \pi)^{n / 2} \operatorname{det}(B)^{-1 / 2}}$. Let $C=B^{-1}$.
i) Show that B is diagonal if and only if $\left\{X_{1}, \ldots, X_{n}\right\}$ are independent ${ }^{1}$
ii) By first diagonalizing B show that $c_{i j}=\mathrm{E}\left(\left(X_{i}-\mathrm{E}\left(X_{i}\right)\right) \cdot\left(X_{j}-\right.\right.$ $\left.\mathrm{E}\left(X_{j}\right)\right)$).
The Moments of a Complex Gaussian Random Variable. Suppose X and Y are independent real Gaussian random variables with mean 0 and variance 1. Then $Z=(X+i Y) / \sqrt{2}$ is a complex Gaussian random variable with mean 0 and variance $\mathrm{E}(Z \bar{Z})=\frac{1}{2} \mathrm{E}\left(X^{2}+Y^{2}\right)=1$ moreover

$$
\mathrm{E}\left(Z^{m} \bar{Z}^{n}\right)= \begin{cases}0 & m \neq n \\ m! & m=n\end{cases}
$$

Exercise 4. Let $Z=(X+i Y) / \sqrt{2}$ be a complex Gaussian random variable with mean 0 and variance 1.
i) By making the substitution $\vec{t}=O \vec{s}$, show that for $m \neq n$ $\int_{\mathbb{R}^{2}}\left(t_{1}+i t_{2}\right)^{m}\left(t_{1}-i t_{2}\right)^{n} e^{-\left(t_{1}^{2}+t_{2}^{2}\right)} d t_{1} d t_{2}=0$, where

$$
O=\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]
$$

ii) Show that $\mathrm{E}\left(Z^{m} \bar{Z}^{n}\right)=0$ for $m \neq n$.
iii) By switching to polar coordinates show that $\mathrm{E}\left(|Z|^{2 n}\right)=n$!.

Wick's Formula ${ }^{2}$. Let $\left(X_{1}, \ldots X_{n}\right)$ be a real Gaussian random vector and $i_{1}, \ldots i_{k} \in[n]$. Gian Carlo Wick found in 1950 a simple expression for $\mathrm{E}\left(X_{i_{1}} \cdots X_{i_{k}}\right)$. If k is even and $\pi \in \mathcal{P}_{2}(k)$ let $\mathrm{E}_{\pi}\left(X_{1}, \ldots, X_{k}\right)=$ $\prod_{(r, s) \in \pi} \mathrm{E}\left(X_{r} X_{s}\right)$. For example if $\pi=\{(1,3)(2,6)(4,5)\}$ then $\mathrm{E}_{\pi}\left(X_{1}\right.$, $\left.X_{2}, X_{3}, X_{4}, X_{5}, X_{6}\right)=\mathrm{E}\left(X_{1} X_{3}\right) \mathrm{E}\left(X_{2} X_{6}\right) \mathrm{E}\left(X_{4} X_{5}\right) . \quad \mathrm{E}_{\pi}$ is a k-linear functional.

[^0]Theorem 1. Let $\left(X_{1}, \ldots, X_{n}\right)$ be a real Gaussian random vector and $i_{1}, \ldots, i_{k} \in[n]$. Then $\mathrm{E}\left(X_{i_{1}} \cdots X_{i_{k}}\right)=\sum_{\pi \in \mathcal{P}_{2}(k)} \mathrm{E}_{\pi}\left(X_{i_{1}}, \ldots, X_{i_{k}}\right)$.

Proof. Suppose that the covariance matrix C of $\left(X_{1}, \ldots, X_{n}\right)$ is diagonal, i.e. the X_{i} 's are independent. Consider $\left(i_{1}, \ldots i_{k}\right)$ as a function $[k] \rightarrow[n]$. Let $\left\{a_{1}, \ldots, a_{r}\right\}$ be the range of i and $A_{j}=i^{-1}\left(a_{j}\right)$. Then $\left\{A_{1}, \ldots, A_{r}\right\}$ is a partition of $[k]$ which we denote $\operatorname{ker}(i)$. Then $\mathrm{E}\left(X_{i_{1}} \cdots X_{i_{k}}\right)=\prod_{t=1}^{r} \mathrm{E}\left(X_{a_{t}}^{\#\left(A_{t}\right)}\right)$. Let us recall that if X is a real random variable of mean 0 and variance c then for k even $\mathrm{E}\left(X^{k}\right)=c^{k / 2} \times$ $\#\left(\mathcal{P}_{2}(k)\right)=\sum_{\pi \in \mathcal{P}_{2}(k)} \mathrm{E}_{\pi}\left(X, \ldots, X_{k}\right)$ and for k odd $\mathrm{E}\left(X^{k}\right)=0$. Thus we can write the product $\prod_{t} \mathrm{E}\left(X_{a_{t}}^{\#\left(A_{t}\right)}\right)$ as a sum $\sum_{\pi \in \mathcal{P}_{2}(k)} \mathrm{E}_{\pi}\left(X_{i_{1}}, \ldots\right.$, $X_{i_{k}}$) where the sum runs over all π 's which only connect elements in the same block of $\operatorname{ker}(i)$. Since $\mathrm{E}\left(X_{i_{r}} X_{i_{s}}\right)=0$ for $i_{r} \neq i_{s}$ we can relax the condition that π only connect elements in the same block of $\operatorname{ker}(i)$. Hence

$$
\begin{equation*}
\mathrm{E}\left(X_{i_{1}} \cdots X_{i_{k}}\right)=\sum_{\pi \in \mathcal{P}_{2}(k)} \mathrm{E}_{\pi}\left(X_{i_{1}}, \ldots, X_{i_{k}}\right) \tag{1}
\end{equation*}
$$

Finally let us suppose that C is arbitrary. Let the density of (X_{1}, \ldots, $\left.X_{n}\right)$ be $\frac{\exp \left(-\frac{1}{2}\langle B \vec{t}, \vec{t})\right.}{(2 \pi)^{n / 2} \operatorname{det}(B)^{-1 / 2}}$ and choose an orthogonal matrix O such that $D=O^{-1} B O$ is diagonal. Let $\left[\begin{array}{c}Y_{1} \\ \vdots \\ Y_{n}\end{array}\right]=O^{-1}\left[\begin{array}{c}X_{1} \\ \vdots \\ X_{n}\end{array}\right]$. Then $\left(Y_{1}, \ldots\right.$, $\left.Y_{n}\right)$ is a real Gaussian random vector with the diagonal covariance matrix D. Then

$$
\begin{aligned}
\mathrm{E}\left(X_{i_{1}} \cdots X_{i_{k}}\right) & =\sum_{j_{1}, \ldots, j_{k}=1}^{n} o_{i_{1} j_{1}} o_{i_{2} j_{2}} \cdots o_{i_{k} j_{k}} \mathrm{E}\left(Y_{j_{1}} \cdots Y_{j_{k}}\right) \\
& =\sum_{j_{1}, \ldots, j_{k}=1}^{n} o_{i_{1} j_{1}} \cdots o_{i_{k} j_{k}} \sum_{\pi \in \mathcal{P}_{2}(k)} \mathrm{E}_{\pi}\left(Y_{i_{1}}, \ldots, Y_{i_{k}}\right) \\
& =\sum_{\pi \in \mathcal{P}_{2}(k)} \mathrm{E}_{\pi}\left(X_{i_{1}}, \ldots, X_{i_{k}}\right)
\end{aligned}
$$

Since both sides of equation (1) are k-linear we can extend by linearity to the complex case.

Corollary 2. Suppose $\left(X_{1}, \ldots, X_{n}\right)$ is a complex Gaussian random vector then

$$
\mathrm{E}\left(X_{i_{1}} \cdots X_{i_{k}}\right)=\sum_{\pi \in \mathcal{P}_{2}(k)} \mathrm{E}_{\pi}\left(X_{i_{1}}, \ldots, X_{i_{k}}\right)
$$

Gaussian Random Matrices. Let X be an $N \times N$ matrix with entries $f_{i j}$ where $f_{i j}=x_{i j}+\sqrt{-1} y_{i j}$ is a complex Gaussian random variable such that
i) $\left\{x_{i j}\right\}_{i \geq j} \cup\left\{y_{i j}\right\}_{i>j}$ is independent
ii) $\mathrm{E}\left(f_{i j}\right)=0, \mathrm{E}\left(\left|f_{i j}\right|^{2}\right)=\frac{1}{N}$

Then X is a self-adjoint Gaussian random matrix. Such a random matrix is often called a GUE random matrix (GUE = Gaussian unitary ensemble).
Exercise 5. Let X be an $N \times N$ GUE random matrix, with entries $f_{i j}=x_{i j}=\sqrt{-1} y_{i j}$ normalized so that $\mathrm{E}\left(\left|f_{i j}\right|^{2}\right)=1$.
i) Consider the random N^{2}-vector $\left(x_{11}, \ldots, x_{N N}, x_{12}, \ldots, x_{1 N}, \ldots\right.$, $\left.x_{N-1, N}, y_{12}, \ldots, y_{N-1, N}\right)$. Show that the density of this vector is $c e^{-\frac{1}{2} \operatorname{Tr}\left(X^{2}\right)} d X$ where $d X=\prod_{i=1}^{N} d x_{i i} \prod_{i<j} d x_{i j} d y_{i j}$, for some constant c.
ii) Evaluate the constant c.

A genus expansion for the GUE. Let us calculate $\mathrm{E}\left(\operatorname{Tr}\left(X^{k}\right)\right)$, for X a $N \times N$ GUE random matrix. We first suppose for convenience that the entries of X have been normalized so that $\mathrm{E}\left(\left|f_{i j}\right|^{2}\right)=1$. Now

$$
\mathrm{E}\left(\operatorname{Tr}\left(X^{k}\right)\right)=\sum_{i_{1}, \ldots, i_{k}=1}^{N} \mathrm{E}\left(f_{i_{1} i_{2}} f_{i_{2} i_{3}} \cdots f_{i_{k} i_{1}}\right) .
$$

By Wick's formula $\mathrm{E}\left(f_{i_{1} i_{2}} f_{i_{2} i_{3}} \cdots f_{i_{k} i_{1}}\right)=0$ whenever k is odd. So let us evaluate

$$
\mathrm{E}\left(f_{i_{1} i_{2}} f_{i_{2} i_{3}} \cdots f_{i_{2 k} i_{1}}\right)=\sum_{\pi \in \mathcal{P}_{2}(2 k)} \mathrm{E}_{\pi}\left(f_{i_{1} i_{2}}, f_{i_{2} i_{3}}, \cdots, f_{i_{2 k} i_{1}}\right)
$$

Now $\mathrm{E}\left(f_{i_{r} i_{r+1}} f_{i_{s} i_{s+1}}\right)$ will be 0 unless $i_{r}=i_{s+1}$ and $i_{s}=i_{r+1}$ (using the convention that $i_{2 k+1}=i_{1}$). If $i_{r}=i_{s+1}$ and $i_{s}=i_{r+1}$ then $\mathrm{E}\left(f_{i_{r} i_{r+1}} f_{i_{s} i_{s+1}}\right)=\mathrm{E}\left(\left|f_{i_{r} i_{r+1}}\right|^{2}\right)=1$. Thus given $\left(i_{1}, \ldots, i_{2 k}\right)$, $\mathrm{E}\left(f_{i_{1} i_{2}} f_{i_{2} i_{3}} \cdots f_{i_{2 k} i_{1}}\right)$ will be the number of pairings π of [2k] such that for each pair (r, s) of $\pi, i_{r}=i_{s+1}$ and $i_{s}=i_{r+1}$.

In order to easily count these we introduce the following notation. We regard the $2 k$-tuple $\left(i_{1}, \ldots, i_{2 k}\right)$ as a function $i:[2 k] \rightarrow[N]$. A pairing $\pi=\left\{\left(r_{1}, s_{1}\right)\left(r_{2}, s_{2}\right), \ldots,\left(r_{k}, s_{k}\right)\right\}$ of $[2 k]$ will be regarded as a permutation of [2k] by letting $\left(r_{i}, s_{i}\right)$ be the transposition that switches
r_{i} with s_{i} and $\pi=\left(r_{1}, s_{1}\right) \cdots\left(r_{k}, s_{k}\right)$ as the product of these transpositions. We also let $\gamma_{2 k}$ be the permutation of [2k] which has the one cycle $(1,2,3, \ldots, 2 k)$. With this notation our condition on the pairings has a simple expression. Let π be a pairing of [2k] and (r, s) be a pair of π. The condition $i_{r}=i_{s+1}$ can be written as $i(r)=i\left(\gamma_{2 k}(\pi(r))\right)$ since $\pi(r)=s$ and $\gamma_{2 k}(\pi(r))=s+1$. Thus $\mathrm{E}_{\pi}\left(f_{i_{1} i_{2}}, f_{i_{2} i_{3}}, \ldots, f_{i_{2 k} i_{1}}\right)$ will be 1 if i is constant on the orbits of $\gamma_{2 k} \pi$ and 0 otherwise. Thus

$$
\left.\begin{array}{rl}
\mathrm{E}\left(\operatorname{Tr}\left(X^{2 k}\right)\right) & =\sum_{i_{1}, \ldots, i_{2 k}=1}^{N} \mathrm{n}^{\mathrm{o}}\left\{\pi \in \mathcal{P}_{2}(2 k)\right. \\
& =\sum_{\pi \in \mathcal{P}_{2}(2 k)} \mathrm{n}^{\mathrm{o}}\left\{\begin{array}{l}
\text { is constant on the } \\
\text { orbits of } \gamma_{2 k} \pi
\end{array}\right.
\end{array}\right\}
$$

Now let π and γ be any two permutations of $[n]$ and suppose that the group generated by π and γ acts transitively on $[n]$, then by a theorem of Alain Jacques (1968) and Robert Cori (1969) there is a positive integer g such that $\#(\pi)+\#\left(\pi^{-1} \gamma\right)+\#(\gamma)=n+2(1-g)$, and g is the minimal genus of a surface upon which a 'graph' of π relative to γ can be embedded.

Example 3. $\gamma=(1,2,3,4,5,6), \pi=(1,4)(2,5)(3,6), \#(\pi)=3$, $\#(\gamma)=1, \#\left(\pi^{-1} \gamma\right)=2, \#(\pi)+\#\left(\pi^{-1} \gamma\right)+\#(\gamma)=6, \therefore g=1$
Conclusion: for a pairing π of $[2 k]$

- $\#\left(\pi^{-1} \gamma\right)=k+1-2 g$ for some $g \geq 0$,
- $\#\left(\pi^{-1} \gamma\right) \leq k+1$ with equality only when $g=0$ i.e. when the graph is planar.

Now change the normalization of X so $\mathrm{E}\left(\left|f_{i j}\right|^{2}\right)=\frac{1}{N}$, and let $\operatorname{tr}=$ $\frac{1}{N} \mathrm{Tr}$. Then

$$
\begin{align*}
\mathrm{E}\left(\operatorname{tr}\left(X^{2 k}\right)\right) & =N^{-(k+1)} \sum_{\pi \in \mathcal{P}_{2}(2 k)} N^{\#\left(\gamma_{2 k} \pi\right)} \\
& =\sum_{\pi \in \mathcal{P}_{2}(2 k)} N^{-2 g_{\pi}} \tag{2}
\end{align*}
$$

because $\#\left(\pi^{-1} \gamma\right)=\#\left(\gamma \pi^{-1}\right)$ in general and if π is a pairing $\pi=\pi^{-1}$. Thus $c_{k}=\lim _{N \rightarrow \infty} \mathrm{E}\left(\operatorname{tr}\left(X^{2 k}\right)\right)$ is the number of non-crossing pairings of $[2 k]$, i.e. the cardinality of $\left|N C_{2}(2 k)\right|$, which is the k-th Catalan
number $\frac{1}{k+1}\binom{2 k}{k} . c_{k}$ is also the $2 k^{t h}$ moment of the semi-circle law:

$$
c_{k}=\frac{1}{2 \pi} \int_{-2}^{2} t^{2 k} \sqrt{4-t^{2}} d t \underset{-2-1}{0.15}
$$

This is Wigner's famous semi-circle law, which says that the spectral measures of $\left\{X_{N}\right\}_{N}$, relative to the state $\mathrm{E}(\operatorname{tr}(\cdot))$, converge to $\frac{\sqrt{4-t^{2}}}{2 \pi} d t$ i.e. the expected proportion of eigenvalues of X between a and b is asymptotically $\int_{a}^{b} \frac{\sqrt{4-t^{2}}}{2 \pi} d t$. If we regard $X: \Omega \rightarrow M_{N}(\mathbb{C})$ we can say something stronger. On the complement of a set of probability 0 , the same result holds for $X(\omega)$.

Asymptotic Freeness of Independent GUE's. Suppose that for each N we have X_{1}, \ldots, X_{s} are independent $N \times N$ GUE's. For notational simplicity we suppress the dependence on N. Suppose m_{1}, \ldots, m_{r} are positive integers and $i_{1}, i_{2}, \ldots, i_{r} \in[s]$ such that $i_{1} \neq i_{2}, i_{2} \neq$ $i_{3}, \ldots, i_{r-1} \neq i_{r}$. Consider the random matrix (which depends on N)

$$
Y:=\left(X_{i_{1}}^{m_{1}}-c_{m_{1}} I\right)\left(X_{i_{2}}^{m_{2}}-c_{m_{2}} I\right) \cdots\left(X_{i_{r}}^{m_{r}}-c_{m_{r}} I\right)
$$

Each factor is centred asymptotically and adjacent factors involve independent matrices. We shall show that $\mathrm{E}(\operatorname{tr}(Y)) \rightarrow 0$ and we shall call this property asymptotic freeness. This will then motivate Voiculecu's definition of freeness.

First let us recall the principle of inclusion-exclusion (Da Silva, 1853). Let S be a set and $E_{1}, \ldots, E_{r} \subseteq S$. Then

$$
\begin{align*}
& \left|S \backslash\left(E_{1} \cup \cdots \cup E_{r}\right)\right|=|S|-\sum_{i+1}^{r}\left|E_{i}\right|+\sum_{i_{1} \neq i_{2}}\left|E_{i_{1}} \cap E_{i_{2}}\right|+\cdots \\
& \quad+(-1)^{k} \sum_{\substack{i_{1}, \ldots, i_{k} \\
\text { distinct }}}\left|E_{i_{1}} \cap \cdots \cap E_{i_{k}}\right|+\cdots+(-1)^{r}\left|E_{1} \cap \cdots \cap E_{r}\right| \tag{3}
\end{align*}
$$

for example, $\left|S \backslash\left(E_{1} \cup E_{2}\right)\right|=|S|-\left(\left|E_{1}\right|+\left|E_{2}\right|\right)+\left|E_{1} \cap E_{2}\right|$.
We can rewrite the right hand side of (3) as

$$
\begin{aligned}
\left|S \backslash\left(E_{1} \cup \cdots \cup E_{r}\right)\right| & =\sum_{\substack{M \subseteq[r] \\
M=\left\{i_{1}, \ldots, i_{m}\right\}}}(-1)^{m}\left|E_{i_{1}} \cap \cdots \cap E_{i_{m}}\right| \\
& =\sum_{M \subseteq[r]}(-1)^{|M|}\left|\bigcap_{i \in M} E_{i}\right|
\end{aligned}
$$

provided we make the convention that $\bigcap_{i \in \emptyset} E_{i}=S$ and $(-1)^{|\emptyset|}=1$.

Notation 4. Let $i_{1}, \ldots, i_{m} \in[s]$. We regard these labels as the colours of the matrices $X_{i_{1}}, X_{i_{2}}, \ldots, X_{i_{m}}$. Given a pairing $\pi \in \mathcal{P}_{2}(m)$, we say that π respects the colours $\vec{i}:=\left(i_{1}, \ldots, i_{m}\right)$, or to be brief: π respects i, if $i_{r}=i_{s}$ whenever (r, s) is a pair of π. Thus π respects i if and only if π only connects matrices of the same colour.

Lemma 5. Suppose $i_{1}, \ldots, i_{m} \subseteq[s]$ are positive integers. Then

$$
\mathrm{E}\left(\operatorname{tr}\left(X_{i_{1}} \cdots X_{i_{m}}\right)\right)=\mid\left\{\pi \in N C_{2}(m) \mid \pi \text { respects } \vec{i}\right\} \mid+O\left(N^{-2}\right)
$$

Proof.

$$
\begin{aligned}
\mathrm{E}\left(\operatorname{tr}\left(X_{i_{1}} \cdots X_{i_{m}}\right)\right) & =\sum_{j_{1}, \ldots, j_{m}} \mathrm{E}\left(f_{j_{1} j_{2}}^{\left(i_{1}\right)} \cdots f_{j_{m}, j_{1}}^{\left(i_{m}\right)}\right) \\
& =\sum_{j_{1}, \ldots, j_{m}} \sum_{\pi \in \mathcal{P}_{2}(m)} \mathrm{E}_{\pi}\left(f_{j_{1}, j_{2}}^{\left(i_{1}\right)}, \ldots, f_{j_{m}, j_{1}}^{\left(i_{k}\right)}\right) \\
& =\sum_{\substack{\pi \in \mathcal{P}_{2}(m) \\
\pi \text { respects } i}} \sum_{j_{1}, \ldots, j_{m}} \mathrm{E}_{\pi}\left(f_{j_{1}, j_{2}}^{\left(i_{1}\right)}, \ldots, f_{j_{m}, j_{1}}^{\left(i_{k}\right)}\right) \\
& \stackrel{\text { by }(2)}{=} \sum_{\substack{\pi \in \mathcal{P}_{2}(m)}} N^{-2 g_{\pi}} \\
& =\mid\left\{\pi \in N C_{2}(m) \mid \pi \text { respects } i\right\} \mid+O\left(N^{-2}\right)
\end{aligned}
$$

Theorem 6. If $i_{1} \neq i_{2}, i_{2} \neq i_{3}, \ldots, i_{r-1} \neq i_{r}$ then $\lim _{N} \mathrm{E}(\operatorname{tr}(Y))=0$.
Proof. Let let $I_{1}=\left\{1, \ldots, m_{1}\right\}, I_{2}=\left\{m_{1}+1, \ldots, m_{1}+m_{2}\right\}, \ldots$, $I_{r}=\left\{m_{1}+\cdots+m_{r-1}+1, \ldots, m_{1}+\cdots+m_{r}\right\}$.
$\mathrm{E}\left(\operatorname{tr}\left(\left(X_{i_{1}}^{m_{1}}-c_{m_{1}} I\right) \cdots\left(X_{i_{r}}^{m_{r}}-c_{m_{r}} I\right)\right)\right)$
$=\sum_{M \subseteq[r]}(-1)^{|M|}\left[\prod_{i \in M} c_{m_{i}}\right] \mathrm{E}\left(\operatorname{tr}\left(\prod_{j \notin M} X_{i_{j}}^{m_{j}}\right)\right)$
$=\sum_{M \subseteq[r]}(-1)^{|M|}\left[\prod_{i \in M} c_{m_{i}}\right] \mid\left\{\pi \in N C_{2}\left(\cup_{j \notin M} I_{j}\right) \mid \pi\right.$ respects $\left.i\right\} \mid$ $+O\left(N^{-2}\right)$
Let $S=\left\{\pi \in N C_{2}(m) \mid \pi\right.$ respects $\left.i\right\}$ and $E_{j}=\{\pi \in S \mid$ elements of I_{j} are only paired amongst themselves $\}$. Then

$$
\left|\bigcap_{j \in M} E_{j}\right|=\left[\prod_{j \in M} c_{m_{j}}\right] \mid\left\{\pi \in N C_{2}\left(\cup_{j \notin M} I_{j}\right) \mid \pi \text { respects } i\right\} \mid
$$

Thus

$$
\mathrm{E}\left(\operatorname{tr}\left(\left(X_{i_{1}}^{m_{1}}-c_{m_{1}} I\right) \cdots\left(X_{i_{r}}^{m_{r}}-c_{m_{r}} I\right)\right)\right)=\sum_{M \subseteq[r]}(-1)^{|M|}\left|\bigcap_{j \in M} E_{j}\right|+O\left(N^{-2}\right)
$$

So we must show that $\sum_{M \subseteq[r]}(-1)^{|M|}\left|\bigcap_{j \in M} E_{J}\right|=0$. However by inclusion-exclusion this sum equals $\left|S \backslash\left(E_{1} \cup \cdots \cup E_{r}\right)\right|$. Now $S \backslash\left(E_{1} \cup\right.$ $\cdots \cup E_{r}$) is the set of pairings of $[m]$ respecting i such that at least one element of each interval is connected to another interval. However this set is empty because elements of $\left|S \backslash\left(E_{1} \cup \cdots \cup E_{r}\right)\right|$ must connect each interval to at least one other interval in a non-crossing way and thus form a non-crossing partition of the intervals $\left\{I_{1}, \ldots, I_{r}\right\}$ without singletons, in which no pair of adjacent intervals are in the same block, and this is impossible.

Asymptotic Freeness. For each N let $\mathcal{A}_{N, i}$ be the polynomials in $X_{N, i}$ with complex coefficients. Let \mathcal{A}_{N} be the algebra generated by $\mathcal{A}_{N, 1}, \ldots, \mathcal{A}_{N, s}$. For $A \in \mathcal{A}_{N}$ let $\phi_{N}(A)=\mathrm{E}(\operatorname{tr}(A))$. Thus $\mathcal{A}_{N, 1}, \ldots$, $\mathcal{A}_{N, s}$ are unital subalgebras of the unital algebra \mathcal{A}_{N} with state ϕ_{N}. We have just shown that if we have a positive integer r such that for each N and each $A_{N, 1}, \ldots, A_{N, r} \in \mathcal{A}_{N}$ such that

- $\lim _{N} \phi_{N}\left(A_{N, i}\right)=0$ for $i=1,2, \ldots, r$
- $A_{N, i} \in \mathcal{A}_{N, j_{i}}$ for $i=1,2, \ldots, r$
- $j_{1} \neq j_{2}, j_{2} \neq j_{3}, \ldots, j_{r-1} \neq j_{r}$
then $\lim _{N} \phi_{N}\left(A_{N, 1} A_{N, 2} \cdots A_{N, r}\right)=0$. We thus say that the subalgebras $\mathcal{A}_{N, 1}, \ldots, \mathcal{A}_{N, s}$ are asymptotically free because, in the limit as N tends to infinity, they satisfy the freeness property of Voiculescu.

Freeness. Let (\mathcal{A}, ϕ) be a unital algebra with a state. Suppose \mathcal{A}_{1}, \ldots, \mathcal{A}_{s} are unital subalgebras. We say that $\mathcal{A}_{1} \ldots \mathcal{A}_{s}$ are freely independent with respect to ϕ (or just free) if whenever we have $a_{1}, \ldots, a_{r} \in \mathcal{A}$ such that

- $\phi\left(a_{i}\right)=0$ for $i=1, \ldots, r$
- $a_{i} \in \mathcal{A}_{j_{i}}$ for $i=1, \ldots, r$
- $j_{1} \neq j_{2}, j_{2} \neq j_{3}, \ldots, j_{r-1} \neq j_{r}$
we must have $\phi\left(a_{1} \cdots a_{r}\right)=0$.

[^0]: ${ }^{1}$ i.e. if i_{1}, \ldots, i_{k} are distinct and n_{1}, \ldots, n_{k} are positive integers then $\mathrm{E}\left(X_{i_{1}}^{n_{1}}\right.$ $\left.\cdots X_{i_{k}}^{n_{k}}\right)=\mathrm{E}\left(X_{i_{1}}^{n_{1}}\right) \cdots \mathrm{E}\left(X_{i_{k}}^{n_{k}}\right)$
 ${ }^{2}$ Gian Carlo Wick, The Evaluation of the Collision Matrix (1950)

