Free Probability and Random Matrices

Exercise 1, Due September 27

1) Let ν be a probability measure on \mathbb{R}. show that if ν has a moment of order k then ν has moments of order m for $m<k$.
2) Suppose that the probability measure ν has a fourth moment, then its characteristic function $\phi(t)=1+\alpha_{1} \frac{(i t)}{1!}+\alpha_{2} \frac{(i t)^{2}}{2!}+\alpha_{3} \frac{(i t)^{3}}{3!}+\alpha_{4} \frac{(i t)^{4}}{4!}+o(t)$, where $\alpha_{1}, \alpha_{2}, \alpha_{3}$, and α_{4} are the first four moments. Let $\log (\phi(t))=k_{1}(i t)+$ $k_{2} \frac{(i t)^{2}}{2!}+k_{3} \frac{(i t)^{3}}{3!}+k_{4} \frac{(i t)^{4}}{4!}+o(t)$. Using the Taylor series for $\log (1+x)$, find a formula for $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\}$ in terms of $\left\{k_{1}, k_{2}, k_{3}, k_{4}\right\}$.
3) Let $\vec{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ be a Gaussian random vector with density $\exp \left(-\frac{1}{2}\langle B \vec{t}, \vec{t}\rangle\right) \operatorname{det}(B)^{1 / 2}(2 \pi)^{-n / 2}$. Let $C=B^{-1}$ normalized so that $\mathrm{E}\left(\left|f_{i j}\right|^{2}\right)=$ 1.
i) Show that B is diagonal if and only if $\left\{X_{1}, \ldots X_{n}\right\}$ is independent.
$i i)$ by first diagonalizing B show that $c_{i j}=\mathrm{E}\left(\left(X_{i}-\mathrm{E}\left(X_{i}\right)\right)\left(X_{j}-\mathrm{E}\left(X_{j}\right)\right)\right)$.
4) Let $Z=\frac{1}{\sqrt{2}}(X+i Y)$ with X and Y independent real Gaussian random variables with mean 0 and variance 1 .
i) By making the substitution $\vec{t}=O \vec{s}$ where $O=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$, show that for $m \neq n, \int_{\mathbb{R}^{2}}\left(t_{1}+i t_{2}\right)^{m}\left(t_{1}-i t_{2}\right)^{n} e^{-\left(t_{1}^{2}+t_{2}^{2}\right)} d t_{1} d t_{2}=0$.
ii) Show that $\mathrm{E}\left(Z^{m} \bar{Z}^{n}\right)=0$ for $m \neq n$.
iii) By switching to polar coordinates, show that $\mathrm{E}\left(|Z|^{n}\right)=n$!.
5) Let X be an $N \times N$ GUE random matrix, with entries $f_{i, j}=x_{i, j}+\sqrt{-1} y_{i, j}$.
i) Consider the random N^{2}-vector:
$\left(x_{11}, x_{22}, \ldots, x_{N N}, x_{1,2}, \ldots, x_{1, N}, \ldots, x_{N-1, N}, y_{12}, \ldots, y_{1 N}, \ldots, y_{N-1, N}\right)$
Show that the density of the vector is $c \exp \left(-\frac{1}{2} \operatorname{Tr}\left(X^{2}\right)\right) d X$, where $d X=\prod_{i=1}^{N} d x_{i i} \prod_{i<j} d x_{i, j} d y_{i, j}$ and c is some constant.
ii) Evaluate the constant c.
