
LECTURE 8: FREE ENTROPY AND LARGE
DEVIATIONS

An important concept in classical probability theory is Shannon’s
notion of entropy. Having developed the analogy between free and
classical probability theory, one hopes to find that a notion of “free
entropy” exists in counterpart to the Shannon entropy. In fact there
is a useful notion of free entropy. However, the development of this
new concept is at present far from complete. The current state of
affairs is that there are two distinct approaches to free entropy. These
should give isomorphic theories, but at present we only know that they
coincide in a limited number of situations.

The first approach to a theory of free entropy is via “microstates.”
This is rooted in the concept of large deviations. The second approach
is “microstates free.” This draws its inspiration from the statistical
approach to classical entropy via the notion of Fisher information. The
unification problem in free probability theory is to prove that these two
theories of free entropy are consistent.

Let us return to the connection between random matrix theory and
free probability theory which we have been developing. We know that
a p-tuple

(A
(1)
N , . . . , A

(p)
N )

of N×N matrices chosen independently at random with respect to the
density

(1) PN(A) = const · e
−N
2

Tr(A2)

on the space of N ×N Hermitian matrices converges almost surely (in
moments with respect to the normalized trace) to a freely independent
family

(s1, . . . , sp)

of semi-circular elements lying in a non-commutative probability space.
The von Neumann algebra generated by p freely independent semi-
circulars is the von Neumann algebra L(Fp) of the free group on p
generators.

How likely is it to observe other distributions/operators for large N?
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Let us consider the case p = 1 more closely. For a random Hermitian
matrix A = A∗ (distribution as above) with real random eigenvalues

(2) λ1 ≤ · · · ≤ λN ,

denote by

(3) µA =
1

N
(δλ1 + · · ·+ δλN

)

the eigenvalue distribution of A (also known as the “empirical eigen-
value distribution”), which is a random measure on R. Wigner’s semi-
cirle law states that as N →∞
(4) PN(µA ≈ µW ) → 1,

where µW is the (non-random) semicircular distribution (see Lecture
1). What is the rate of decay of the probability

(5) PN(µA ≈ ν),

where ν is some measure (not necessarily the semicircle)? We expect
that

(6) PN(µA ≈ ν) ∼ e−N2I(ν)

for some “rate function” I vanishing at µW . By analogy with the classi-
cal theory of large deviations, I should correspond to a suitable notion
of free entropy.

1. Large Deviation Theory

Consider a sequence X1, X2, . . . of independent identically distributed
random variables with distribution µ, and put

(7) Sn =
X1 + · · ·+ Xn

n
.

Let m = E[Xi]. Then the law of large numbers asserts that Sn → m,
while the central limit theorem tells us that for large n

(8) Sn ≈ m +
σ2

√
n

N(0, 1).

For example if µ = N(0, 1) then Sn has distribution N(0, 1
n
) and hence

(9) P (Sn ≈ x) = e−n x2

2

√
n√
2π

∼ e−nI(x).

Thus the probability that Sn is near the value x decays exponentially
in n at a rate determined by x, namely the “rate function” I(x) = x2

2
.

Note that the convex function I(x) has a global minimum at x = 0,
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the minimum value there being 0, which corresponds to the fact that
Sn approaches the mean 0 in probability.

This behavior is described in general by the following theorem of
Cramér: Let X1, X2, X3, . . . be a sequence of i.i.d random variables,
with mean m, and set

(10) Sn :=
1

n
(X1 + · · ·+ Xn),

the empirical mean. There exists a function I(x), the rate function,
such that

P (Sn > x) ≈ e−nI(x), x > m(11)

P (Sn < x) ≈ e−nI(x), x < m.(12)

How does one calculate the rate function I(x) for a given distribution
µ? Suppose µ has mean 0. For arbitrary x > 0, one has for all λ > 0

P (Sn > x) = P (nSn > nx)

≤ E[eλ(nSn−nx)]

= e−λnxE[eλ(X1+···+Xn)]

= e−λnxE[eλXi ]n.

Now put

(13) Λ(λ) := log E[eλXi ],

the cumulant generating series of µ. Then the above reads

(14) P (Sn > x) ≤ e−λnx+nΛ(λ) = e−n(λx−Λ(λ)),

valid for all λ > 0. As Λ achieves its minimum at λ = 0, the above
estimate is also valid for negative λ. Thus

(15) P (Sn > x) ≤ inf
λ

e−n(λx−Λ(λ)) = e−n supλ{λx−Λ(λ)}.

The function λ 7→ Λ(λ) is convex, and the “Legendre transform” of Λ
defined by

(16) Λ∗(x) := sup
λ
{λx− Λ(λ)}

is also convex. Thus we have proved that

(17) P (Sn > x) ≤ e−nΛ∗(x),

where Λ∗ is the Legendre transform of the cumulant generating function
Λ. This gives Λ∗ as a candidate for the rate function; however we also
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have to check that e−nΛ∗(x) is, at least asymptotically, a lower bound;
more precisely, we need to verify that

(18) lim inf
1

n
log P (x− δ < Sn < x + δ) ≥ −Λ∗(x)

for all x and all δ > 0. By making an appropriate shift we can reduce
this to the case x = 0. Then −Λ∗(0) = infλ Λ(λ). The idea of the proof
is then to perturb the distribution µ to µ̃ such that x = 0 is the mean
of µ̃. Consider the case where Λ(λ) has a global minimum at η, and
put

(19)
dµ̃

dµ
(x) = eηx−Λ(η).

Note that ∫
R

dµ̃ = e−Λ(η)

∫
eηxdx(20)

= e−Λ(η)E[eηXi ](21)

= e−Λ(η)eΛ(η)(22)

= 1,(23)

which verifies that µ̃ is a probability measure. Consider now X̃i i.i.d
with distribution µ̃, and put

(24) S̃n =
X̃1 + · · ·+ X̃n

n
.

We have

E[X̃i] =

∫
xdµ̃(x)(25)

= e−Λ(η)

∫
xeηxdx(26)

= e−Λ(η) d

dλ
eΛ(λ)|λ=η(27)

= e−Λ(η)Λ′(η)eΛ(η)(28)

= Λ′(η)(29)

= 0.(30)



LECTURE 8: FREE ENTROPY AND LARGE DEVIATIONS 5

Now, for all ε > 0, we have

P (−ε < Sn < ε) =

∫
|
Pn

i=1 Xi|<nε

µ(dx1) . . . µ(dxn)(31)

≥ e−nε|η|
∫
|
Pn

i=1 Xi|<nε

eη
P

Xiµ(dx1) . . . µ(dxn)(32)

= e−nε|η|enΛ(η)

∫
|
Pn

i=1 Xi|<nε

µ̃(dx1) . . . µ̃(dxn)(33)

= e−nε|η|enΛ(η)P (−ε < S̃n < ε).(34)

By the law of large numbers, S̃n → Eµ̃[X̃i] = 0, i.e.

(35) lim
n→∞

P (−ε < S̃n < ε) = 1

for all ε > 0. Thus for all 0 < ε < δ

lim inf
1

n
log P (−δ < Sn < δ) ≥ lim inf

1

n
log P (−ε < Sn < ε)(36)

≥ Λ(η)− ε|η|, for all ε(37)

≥ Λ(η)(38)

= inf Λ(λ)(39)

= −Λ∗(0).(40)

This sketches the proof of Cramer’s theorem for R. A higher-dimensional
form of Cramer’s theorem is given in the next section.

2. Cramer’s Theorem for Rd

Let X1, X2, . . . be a sequence of i.i.d random vectors, i.e. indepen-
dent Rd-valued random variables with common distribution µ (a prob-
ability measure on Rd). Put

(41) Λ(λ) := E[e〈λ,Xi〉], λ ∈ Rd,

and

(42) Λ∗(x) := sup
λ∈Rd

{〈λ, x〉 − Λ(λ)}.

Assume that Λ(λ) < ∞ for all λ ∈ Rd, and put

(43) Sn :=
1

n
(X1 + · · ·+ Xn).

Then the distribution µSn of the random variable Sn satisfies a large
deviation principle with rate function Λ∗, i.e.

• x 7→ Λ∗(x) is lower semicontinuous (actually convex)
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• Λ∗ is “good,” i.e. {x ∈ Rd : Λ∗(x) ≤ α} is compact for all
α ∈ R

• For any closed set F ⊂ Rd, lim supn
1
n

log P (Sn ∈ F ) ≤ − infx∈F Λ∗(x)

• For any open set G ⊂ Rd, lim infn log P (Sn ∈ G) ≥ − infx∈G Λ∗(x).

This is Cramer’s Theorem for Rd, and in an informal way it says

(44) P (Sn ≈ x) ∼ e−nΛ∗(x).

Actually, we are interested not in Sn, but in the empirical distribution

(45)
1

n
(δX1 + · · ·+ δXn).

Let us consider this in the special case of random variables taking
values in a finite alphabet A = {a1, . . . , ad} :

(46) Xi : Ω → A,

with pk := P (Xi = ak). As n → ∞, the empirical distribution of
the Xi’s should converge to the “most likely” probability measure
(p1, . . . , pd) on A.

Now define the vector of indicator functions Yi : Ω → Rd by

(47) Yi := (1a1(Xi), . . . , 1ad
(Xi)),

so that in particular pk is equal to the probability that Yi will have a 1
in the k-th spot and 0’s elsewhere. Then

(48)
1

n
(Y1 + · · ·+ Yn)

gives the relative frequency of a1, . . . , ad :

(49)
1

n
(δX1 + · · ·+ δXn),

i.e. the empirical distribution of (X1, . . . , Xn).
A probability measure on A is given by a d-tuple (q1, . . . , qd) of pos-

itive real numbers satisfying q1 + · · ·+ qd = 1. By Cramer’s theorem,
(50)

P{ 1

n
(δX1+· · ·+δXn) ≈ (q1, . . . , qd)} = P (

Y1 + · · ·+ Yn

n
≈ (q1, . . . , qd)) ∼ e−nΛ∗(q1,...,qd).

Here

Λ(λ1, . . . , λd) = log E[e〈λ,Yi〉](51)

= log(p1e
λ1 + · · ·+ pde

λd).(52)

Thus the Legendre transform is given by

(53) Λ∗(q1, . . . , qd) = sup
(λ1,...,λd)

{λ1q1 + · · ·+ λdqd − Λ(λ1, . . . , λd)}.
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We compute the supremum over all tuples (λ1, . . . , λd) by finding the
partial ∂/∂λi of

(54) λ1q1 + · · ·+ λdqd − Λ(λ1, . . . , λd)

to be

(55) qi −
1

p1eλ1 + · · ·+ pdeλd
pie

λi .

Thus the max occurs when

(56) λi = log
qi

pi

+ log(p1e
λ1 + · · ·+ pde

λd),

and we compute

Λ∗(q1, . . . , qd) = q1 log
q1

p1

+ · · ·+ qd log
qd

pd

+ (q1 + · · ·+ qd)Λ− Λ

(57)

= q1 log
q1

p1

+ · · ·+ qd log
qd

pd

+ Λ− Λ(58)

= q1 log
q1

p1

+ · · ·+ qd log
qd

pd

(59)

= H((q1, . . . , qd)|(p1, . . . , pd)),(60)

the relative entropy of (q1, . . . , qd) with respect to (p1, . . . , pd). Note
that H((q1, . . . , qd)|(p1, . . . , pd)) ≥ 0, with equality holding if and only
if q1 = p1, . . . , qd = pd.

Thus (p1, . . . , pd) is the most likely realization, with other realiza-
tions exponentially unlikely; their unlikelihood is measured by the rate
function Λ∗. And this rate function is indeed Shannon’s relative en-
tropy. This statement is Sanov’s theorem for a finite alphabet; it also
holds true for continuous distributions.

Sanov’s Theorem: Let X1, X2, . . . be i.i.d real valued random vari-
ables with common distribution µ, and let

(61) νn =
1

n
(δX1 + · · ·+ δXn)

be the empirical distribution of X1, . . . , Xn, which is a random prob-
ability measure on R. Then {νn} satisfies a large deviation principle
with rate function I(ν) = S(ν, µ) (called the “relative entropy”) given
by

(62) I(ν) =

{∫
p(x) log(p(x))dµ(x), if ν = pµ

+∞, otherwise .

Concretely, this means the following. Consider the set M of prob-
ability measures on R with the weak topology (which is a metrizable
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topology, e.g. by the Lévy metric). Then for closed F, open G in M
Sanov’s theorem yields

lim sup
n→∞

1

n
log P (νn ∈ F ) ≤ − inf

ν∈F
S(ν, µ)(63)

lim inf
n→∞

1

n
log P (νn ∈ G) ≥ − inf

ν∈G
S(ν, µ).(64)

3. Back to Random Matrices

Consider again the space HN of Hermitian matrices equipped with
the probability measure PN having density

(65) dPN(A) = const · e−
N
2

Tr(A2)dA.

The eigenvalue distribution P̃N on RN is defined by

(66) P̃N(B) := PN{A ∈ HN : (λ1(A), . . . , λN(A)) ∈ B}.
One knows that P̃ is absolutely continuous with respect to Lebesgue
measure on RN and has density

(67) dP̃N(λ1, . . . , λN) = CN · e−
N
2

PN
i=1 λ2

i

∏
i<j

(λi − λj)
2

N∏
i=1

dλi,

where

(68) CN =
NN2/2

(2π)N/2
∏N

j=1 j!
.

We want to establish a large deviation principle for the empirical
eigenvalue distribution

(69) µA =
1

N
(δλ1(A) + · · ·+ δλN (A))

of a random matrix in HN .
Heuristics for the rate function are as follows. We have

PN(µA ≈ ν) = P̃N(
1

N
(δλ1(A) + · · ·+ δλN (A)) ≈ ν)

(70)

= CN ·
∫
{ 1

N
(δλ1(A)+···+δλN (A))≈ν}

e−
N
2

P
λ2

i

∏
i<j

(λi − λj)
2

N∏
i=1

dλi.(71)

Now for 1
N

(δλ1(A) + · · ·+ δλN (A)) ≈ ν,

(72) −N

2

N∑
i=1

λ2
i = −N2

2

1

N

N∑
i=1

λ2
i
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is a Riemann sum for the integral
∫

x2dν(x). Moreover

(73)
∏
i<j

(λi − λj)
2 = exp(

∑
i<j

log |λi − λj|2) = exp(
∑
i6=j

log |λi − λj|)

is a Riemann sum for N2
∫ ∫

log |x− y|dν(x)dν(y).
Hence, heuristically, we expect that

(74) PN(µA ≈ ν) ∼ e−N2I(ν),

with
(75)

I(ν) = −
∫ ∫

log |x− y|dν(x)dν(y) +
1

2

∫
x2dν(x)− lim

N→∞

1

N2
log CN .

The value of the limit can be explicitly computed as 6/8.
This argument is made rigorous in the following theorem of Ben-

Arous and Guionnet from 1997.
Put

(76) I(ν)) = −
∫ ∫

log |x− y|dν(x)dν(y) +
1

2

∫
x2dν(x)− 6/8.

Then:

(1) I : M → [0,∞] is a well-defined, convex, good function on
the space of real probability measures. It has unique minimum
value 0 which occurs at the Wigner semicircle distribution µW .

(2) The empirical eigenvalue distribution satisfies a large deviation
principle with respect to P̃N with rate function I : for any open
G and closed F in M
• lim infN→∞

1
N2 log P̃N(

δλ1
+···+δλN

N
∈ G) ≥ − infν∈G I(ν).

• lim sup N →∞ 1
N2 log P̃N(

δλ1
+···+δλN

N
∈ F ) ≤ − infν∈F I(ν).


