
LECTURE 2: OPERATOR ALGEBRAS AND FREENESS

1. Group von Neumann algebras and free group factors

1.1. Locally Compact Groups and Haar Measure. Let G be a group endowed
with a topology making G a locally compact topological space. This means that
every point of G has a compact neighbourhood. Then there exists a regular Borel
measure µL on G which is invariant under left translation. Invariance under left
translation means that for any Borel set B ⊆ G and any group element g ∈ G we
have

(1) µL(gB) = µL(B).

Regularity means that

µL(B) = inf{µL(U) : U ⊇ B, U open}(2)

= sup{µL(K) : K ⊇ B, K compact}.(3)

Such a measure µL is called a left Haar measure on G. One also has the existence of
a right Haar measure µR which has the right translation invariance property; left
and right Haar measures may or may not coincide. In the special case that they do,
G is called a unimodular group, and we denote the left/right Haar measure simply
µ.

1.2. The Group Algebra. Existence of Haar measure allows us to integrate over
G. Denote by CC(G) the collection of complex-valued compactly supported func-
tions on G. Define the convolution of two functions a, b ∈ CC(G) by

(4) (a ∗ b)(g) :=
∫

G

a(h)b(h−1g)dµ(h).

One also defines an involution on CC(G) by

(5) a∗(g) = a(g−1).

If G is a discrete group, i.e. {g} is an open set for any g ∈ G, then compactly
supported means finitely supported. Thus CC(G) is the collection of finitely sup-
ported functions on G, and so can be identified with the group algebra C[G] of
formal linear combinations of elements in g with complex coefficients:

(6) a =
∑
g∈G

a(g)g where only finitely many α(g) 6= 0.

Then multiplication is written

(7) a ∗ b =
∑
g∈G

(a ∗ b)(g)g =
∑
g∈G

(
∑
h∈G

a(h)b(h−1g))g.

Note that the function

(8) δe = 1 · e
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is the identity element in the group algebra C[G], where e is the identity element
in G. A discrete group G is locally compact and unimodal with left/right Haar
measure of each group element equal to 1.

Now define an inner product on C[G] by setting

(9) 〈g, h〉 =

{
1, if g = h

0, if g 6= h

on G and extending sesquilinearly to C[G]. From this inner product we define the
2-norm on C[G] by

(10) ‖a‖2
2 = 〈a, a〉.

In this way (C[G], ‖ · ‖) is a normed ∗-algebra. However, it is not complete. The
completion of C[G] with respect ‖ · ‖2 consists of all functions a : G→ C satisfying

(11)
∑
g∈G

|a(g)|2 <∞,

and is denoted by `2(G), and is a Hilbert space.
Now consider a unitary group representation

(12) λ : G→ U(`2(G))

defined by

(13) λ(g) ·
∑
h∈G

a(h)h :=
∑
h∈G

a(h)(gh).

This is the left regular representation of G on the Hilbert space `2(G). It is obvious
from the definition that each λ(g) is an isometry of `2(G), but we want to check
that it is in fact a unitary operator on `2(G). Since clearly

(14) 〈gh, k〉 = 〈h, g−1k〉,
the adjoint of the operator λ(g) is λ(g−1). But then since λ is a group homomor-
phism, we have λ(g)λ(g)∗ = I = λ(g)∗λ(g), so that λ(g) is indeed a unitary operator
on `2(G).

Now extend the domain of λ from G to C[G] in the obvious way:

(15) λ(a) = λ(
∑
g∈G

a(g)g) =
∑
g∈G

a(g)λ(g).

This makes λ into an algebra homomorphism

(16) λ : C[G] → B(`2(G)),

i.e. λ is a representation of the group algebra on `2(G). We define two new (closed)
algebras via this representation. The reduced C∗-group algebra C∗

red(G) of G is
the closure of λ(C[G]) ⊂ B(`2(G)) in the operator norm topology. The group
von Neumman algebra of G, denote L(G), is the closure of λ(C[G]) in the strong
operator topology on B(`2(G)).

One knows that L(G) is a type II1 von Neumann algebra, i.e. there is a trace
on L(G) defined by

(17) τ(a) := 〈e, ae〉
for a ∈ L(G), where e ∈ G is the identity element. An easy fact is that if G is
an i.c.c. group, meaning that the conjugacy class of each e 6= g ∈ G has infinite
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cardinality, then L(G) is a factor, i.e. has trivial center. In particular this shows
that if G is i.c.c. then L(G) is a proper subalgebra of B(H) (where we are writing
H for the Hilbert space `2(G)). Another fact is that if G is an amenable group,
then L(G) is the hyperfinite II1 factor R.

Now consider the case where G = Fn, the free group on n generators. Let us
briefly recall the definition of Fn and some of its properties. Consider the set of all
words, of arbitrary length, over the 2n+1-letter alphabet {a1, a2, . . . , an, a

−1
1 , a−1

2 , . . .
. . . , a−1

n } ∪{e}, where the letters of the alphabet satisfy no relations other than
eai = aie = ai, ea

−1
i = a−1

i e = a−1
i , a−1

i ai = aia
−1
i = e. We say that a word is re-

duced if its length cannot be reduced by applying one of the above relations. Then
the set of all reduced words in this alphabet together with the binary operation of
concatenating words and reducing constitutes the free group Fn on n generators.
Fn is the group generated by n symbols satisfying no relations other than those
required by the group axioms. Fn occurs in algebraic topology, where it is the
fundamental group of a bouquet of n circles, i.e. n circles joined at a single point.
Clearly F1 is isomorphic to the abelian group Z, while Fn is non-abelian for n > 1
and in fact has trivial center. The integer n is called the rank of the free group;
clearly Fn and Fm are isomorphic if and only if m = n.

Since Fn clearly has the infinite conjugacy class property, one knows that the
group von Neumman algebra L(Fn) is a factor, called the free group factor. Murray
and von Neumann showed that L(Fn) is not isomorphic to the hyperfinite factor,
but otherwise nothing was known about the structure of those free group factors,
when free probability was invented to understand them better.

While as pointed out above it is easy to see that Fn ' Fm iff m = n, the
corresponding problem for the free group factors is still unknown.

Free Group Factor Isomorphism Problem: Let m,n ≥ 2, n 6= m. Are the
von Neumann algebras L(Fn) and L(Fm) isomorphic?

The corresponding problem for the group C∗-algebras was solved by Pimsner
and Voiculescu in 1982:

(18) C∗
red(Fn) 6' C∗

red(Fm) for m 6= n.

There is the notion of free product of groups. If G,H are groups, then their free
product G ∗H is defined to be the group whose underlying set is the disjoint union
of G and H, and which has the property that the only relations in G ∗H are those
inherited from G and H and the identification of the neutral elements of G and
H. That is, there should be no non-trivial algebraic relations between elements
of G and elements of H in G × H. A more rigorous definition is the following:
free product is the coproduct in the category of groups. Example: in the category
of groups, the n-fold direct product of n copies of Z is the lattice Zn; the n-fold
coproduct (free product) of n copies of Z is the free group Fn on n generators.

In the category of groups we can understand Fn via the decomposition Z ∗ Z ∗
· · · ∗ Z. Is there a similar “free product of von Neumann algebras” that will help
us to understand the structure of L(Fn)? The notion of “freeness” aka “free inde-
pendence” makes this precise. In order to understand what it means for elements
in L(G) to be “free” need to deal with infinite sums, so the algebraic notion of
freeness will not do: we need a state.

1.3. Moments and Isomorphism of vN-algebras. We will try to understand
a vN-algebra with respect to a state. Let M be a vN-algebra and let φ : M → C be



4 LECTURE 2: OPERATOR ALGEBRAS AND FREENESS

a state defined on M, i.e. a positive linear functional. Select finitely many elements
a1, . . . , ak ∈M.

Definition 1. The collection of numbers gotten by applying the state to words in
the alphabet {a1, . . . , ak} is called the collection of joint moments of a1, . . . , ak, or
the distribution of a1, . . . , ak.

Definition 2. The collection of numbers gotten by applying the state to words in
the alphabet {a1, . . . , ak, a

∗
1, . . . , a

∗
k} is called the collection of joint ∗-moments of

a1, . . . , ak, or the ∗-distribution of a1, . . . , ak.

Theorem 1. Let M = vN(a1, . . . , ak) be generated as von Neumann algebra by
elements a1, . . . , ak and let N = vN(b1, . . . , bk) be generated as von Neumann al-
gebra by elementes b1, . . . , bk. Let φ : M → C and ψ : N → C be faithful normal
states. If a1, . . . , ak and b1, . . . , bk have the same ∗-distributions with respect to φ
and ψ respectively, then the map ai 7→ bi extends to a ∗-isomorphism of M and N.

One proves the theorem by realizing that the assumptions imply that GNS-
constructions with respect to φ and ψ are isomorphic.

Proposition 1.1. τ on L(G) is a faithful state.

Proof. Suppose that a ∈ L(G) satisfies

(19) 0 = τ(a∗a) = 〈e, a∗ae〉 = 〈ae, ae〉,

thus ae = 0. So we have to show ae = 0 =⇒ a = 0. To show that a = 0, it
suffices to show that 〈aξ, ν〉 = 0 for any ξ, ν ∈ `2(G). It suffices to consider vectors
of the form ξ = g, ν = h for g, h ∈ G, since we can get the general case from this
by linearity and continuity. Now, by using the traciality of τ ,

〈ag, h〉 = 〈age, he〉
= 〈e, g−1a∗he〉
= τ(g−1a∗gh

= τ(a∗hg−1)

= 〈ae, hg−1e〉
= 0,

since the first argument to the inner product in the last line is 0. �

2. Freeness in the Free Group Factors

Definition 3. Let A be a unital algebra and φ : A→ C be a unital linear functional.
Consider unital subalgebras A1, . . . , An ⊂ A. We say that these subalgebras are free
if

(20) φ(a1 . . . ak) = 0

whenever
• φ(ai) = 0, i = 1, . . . , k
• a1 ∈ Ai(1), . . . , ak ∈ Ai(k)

• i(j) 6= i(j + 1) for each j = 1, . . . , k − 1.
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Note that this definition depends on the chosen state φ, so it is not an algebraic
condition.

We will view the notion of freeness as an analogue of the classical notion of
independence.

Let us say that a word in A is “alternating” with respect to the subalgebras
A1, . . . , An if adjacent elements come from different subalgebras. Then freeness
says: the subalgebras A1, . . . , An are free if any word in centred elements over
these algebras which alternates is centred.

Proposition 2.1. Let G be a group containing subgroups G1, . . . , Gn such that
G = G1 ∗ · · · ∗ Gn. Let τ be the state τ(a) = 〈e, ae〉 on C[G]. Then the algebras
C[G1], . . . ,C[Gn] are free with respect to τ.

Proof. Let a1a2 . . . ak be an element in C[G] which alternates with respect to the
subalgebras C[G1], . . . ,C[Gn], and assume the factors of the product are centred
with respect to τ. Since τ is the “coefficient of the identity” state, this means that
if aj ∈ C[Gi(j)], then aj looks like

(21) aj =
∑

g∈Gi(j)

aj(g)g

and aj(e) = 0. Thus we have

(22) τ(a1a2 . . . ak) =
∑

g1∈Gi(1)...gk∈Gi(k)

a1(g1)a2(g2) . . . ak(gk)τ [g1g2 . . . gk].

Now, τ [g1g2 . . . gk] 6= 0 only if g1g2 . . . gk = e. g1g2 . . . gk is an alternating word in
G with respect to the subgroups G1, G2, . . . , Gn, and since G = G1 ∗G2 ∗ · · · ∗Gn,
this can happen only when at least one of the factors, let’s say gj , is equal to e;
but in this case aj(gj) = aj(e) = 0. So each summand in the sum for τ [a1a2 . . . ak]
vanishes and we have τ [a1a2 . . . ak] = 0, as required. �

Freeness of the subgroup algebras C[G1], . . . ,C[Gn] is just a simple reformulation
of the fact that G1, . . . , Gn are free subgroups of G. However, a non-trivial fact is
that this reformulation carries over to closures of the subalgebras.

Proposition 2.2. (1) Let A be a C∗-algebra, φ : A→ C a state. Let B1, . . . , Bn ⊂
A be unital ∗-subalgebras which are free with respect to φ. Put Ai := Bi

‖·‖
. Then

A1, . . . , An are also free.
(2) Let M be a vN-algebra, φ : M → C a normal state. Let B1, . . . , Bn be unital

∗-subalgebras which are free. Put Mi := vN(Bi). Then M1, . . . ,Mn are also free.

The proof is left as an exercise.

3. Basic Properties of Freeness

We adopt the general philosophy of regarding freeness as a non-commutative
analogue of the classical notion of independence in probability theory. Thus we
refer to it often as “free independence.”

In general we refer to a pair (A,φ) consisting of a unital algebra A and a unital
linear functional φ : A→ C as a non-commutative probability space.

If A is a C∗-algebra and φ a state, we have a C∗-probability space.
If A is a vN-algebra and φ is a faithful normal state, we have a W ∗-probability

space.
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Proposition 3.1. Let (B,φ) be a non-commutative probability space. Consider
unital subalgebras A1, . . . , An ⊂ B which are free. Let A be the algebra generated by
A1, . . . , An. Then φ|A is determined by φ|A1 , . . . , φ|An and the freeness condition.

Proof. Elements in the generated algebra A are linear combinations of words of the
form a1 . . . ak with aj ∈ Ai(j) for some i(j) ∈ {1, . . . , n} which meet the condition
that neighbouring elements come from different subalgebras. We neet to calculate
φ(a1 . . . ak) for such words. Let us proceed in an inductive fashion.

We know how to calculate φ(a) for a ∈ Ai for some i ∈ {1, . . . , n}.
Now suppose we have a word of the form a1a2 with a1 ∈ Ai(i) and a2 ∈ Ai(2)

with i(1) 6= i(2). By the definition of freeness, this implies

(23) φ[(a1 − φ(a1)1)(a2 − φ(a2)1)] = 0.

But

(24) (a1 − φ(a1)1)(a2 − φ(a2)1) = a1a2 − φ(a2)a1 − φ(a1)a2 + φ(a1)φ(a2)1.

Hence we have

(25) φ(a1a2) = φ
[
φ(a2)a1 + φ(a1)a2 − φ(a1)φ(a2)1

]
= φ(a1)φ(a2).

Continuing in this fashion, we know that

(26) φ(ac
1 . . . a

c
k) = 0

by the definition of freeness, where ac
i = ai − φ(ai)1 is a centred random variable.

But then

(27) φ(ac
1 . . . a

c
k) = φ(a1 . . . ak) + lower order terms in φ,

where the lower order terms are already dealt with by induction hypothesis.
�

Definition 4. Let (A,φ) be a non-commutative probability space. Elements a1, . . . , an

∈ A are said to be freely independent if the generated subalgebras Ai = alg(1, ai)
are free in A with respect to φ.

For example, if a, b are freely independent, then

(28) φ[(a− φ(a)1)(b− φ(b)1)] = 0 =⇒ φ(ab) = φ(a)φ(b).

Slightly more complicated example: let {a1, a2} be free from b. Then applying
the state to the corresponding centred word:

(29) φ[(a1 − φ(a1)1)(b− φ(b)1)(a2 − φ(a2)1)] = 0,

hence the linearity of φ gives

(30) φ(a1ba2) = φ(a1a2)φ(b).

A similar calculation shows that if {a1, a2} is free from {b1, b2}, then

(31) φ(a1b1a2b2) = φ(a1a2)φ(b1)φ(b2)+φ(a1)φ(a2)φ(b1b2)−φ(a1)φ(a2)φ(b1)φ(b2).

It is important to note that while free independence is analogous to classical
independence, it is not a generalization of the classical case. Classical commuting
random variables a, b are free only in trivial cases: φ(aabb) = φ(abab), but the
left hand side is φ(aa)φ(bb) while the right hand side is φ(a2)φ(b)2 + φ(a)2φ(b2)−
φ(a)2φ(b)2, which implies

(32) φ[(a− φ(a))2]φ[(b− φ(b))2] = 0.
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But then (note that states in classical probability spaces are always positive and
faithful) one of the factors inside φ must be 0, so that one of a, b must be a scalar.

Observe that while freeness gives a concrete rule for calculating mixed moments,
this rule is a priori quite complicated.

Proposition 3.2. Let (A,φ) be a noncommutative probability space. The subalge-
bra of scalars C1 is free from any other unital subalgebra B ⊂ A.

Proof. Let a1 . . . ak be an alternating word in centred elements of C1, B. The case
k = 1 is trivial, otherwise we have at least one aj ∈ C1. But then φ(aj) = 0 implies
aj = 0, so a1 . . . ak = 0. Thus obviously φ(a1 . . . ak) = 0. �


