
LECTURE 10: FREE ENTROPY AND OPERATOR
ALGEBRAS

Let (A, τ) be a tracial W ∗-probability space and a1, . . . , an selfad-
joint elements in A. Recall that by definition the joint distribution of
the noncommutative random variables a1, . . . , an is the collection of all
mixed moments

dist(a1, . . . , an) = {τ(ai(1)ai(2) . . . ai(k)) : k ∈ N, i(1), . . . , i(k) ∈ {1, . . . , n}}.
In this lecture we want to examine the probability that the distribu-

tion dist(a1, . . . , an) of (a1, . . . , an) occurs in Voiculescu’s multivariable
generalization of Wigner’s semicircle law.

Let A1, . . . , An be independent random matrices of class SGRM(N, 1
N

).
That is, A1, . . . , An are chosen independently at random from the sam-
ple space MN(C)sa of N×N selfadjoint matrices over C, equipped with
Gaussian probability measure having density proportional to

e−
N
2

Tr(M2)

with respect to Lebesgue measure on MN(C)sa. We know that as N →
∞ we have almost sure convergence

(A1, . . . , An) → (s1, . . . , sn)

with respect to the normalized trace, where (s1, . . . , sn) is a free semi-
circular family. Large deviations from this limit should be given by

PN((A1, . . . , An) : dist(A1, . . . , An) ≈ dist(a1, . . . , an)) ∼ e−N2I(a1,...,an),

where I(a1, . . . , an) is the “free entropy” of a1, . . . , an. The problem is
that this has to be made more precise and that, in particular, there is
no analytical formula to calculate this quantity.

We use the above as motivation to define free entropy as follows.
Given a tracial W ∗-probability space (A, τ) and an n-tuple (a1, . . . , an)
of selfadjoint elements in A, put

Γ(a1, . . . , an; N, r, ε) :=

{(A1, . . . , An) ∈ MN(C)n
sa : | tr(Ai1 . . . Aik)− τ(ai1 . . . aik)| ≤ ε

for all 1 ≤ i1, . . . , ik ≤ n, 1 ≤ k ≤ r}

In words, Γ(a1, . . . , an; N, r, ε) is the set of all n-tuples of N×N selfad-
joint matrices which approximate the mixed moments of the selfadjoint
elements a1, . . . , an of length at most r to within ε.
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Let Λ denote Lebesgue measure on MN(C)n
sa. Define

χ(a1, . . . , an; r, ε) := lim sup
N

1

N2
log Λ(Γ(a1, . . . , an; N, r, ε) +

n

2
log(N),

and

χ(a1, . . . , an) := lim
r→∞
ε→0

χ(a1, . . . , an; r, ε).

The function χ has the following properties:

(1) For n = 1, we have the explicit formula

χ(a) =

∫ ∫
log |x− y|dµa(x)dµa(y) + C.

For n ≥ 2, it is an open problem to find a formula of this sort.
(2) χ is subadditive:

χ(a1, . . . , an) ≤ χ(a1) + · · ·+ χ(an).

This is an easy consequence of the fact that

Γ(a1, . . . , an; N, r, ε) ⊂
n∏

i=1

Γ(ai; N, r, ε).

Thus in particular χ(a1, . . . , an) ∈ [−∞,∞).
(3) Upper semicontinuity: if

(a
(m)
1 , . . . , a(m)

n ) → (a1, . . . , an)

then

χ(a1, . . . , an) ≥ lim sup
n→∞

χ(a
(m)
1 , . . . , a(n)

a ).

This is because if, for arbitrary words of length k with 1 ≤ k ≤
r, we have

|τ(a
(m)
i1

. . . a
(m)
ik

)− τ(ai1 . . . aik)| <
ε

2

for sufficiently large m, then

Γ(a
(m)
1 , . . . , a(m)

n ; N, r,
ε

2
) ⊂ Γ(a1, . . . , an; N, r, ε).

(4) If a1, . . . , an are free, then

χ(a1, . . . , an) = χ(a1) + . . . χ(an).

(5) χ(a1, . . . , an) under the constraint
∑

τ(a2
i ) = n has a unique

maximum when a1, . . . , an is a free semicircular family with
τ(a2

i ) = 1.
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(6) Consider yj = Fj(x1, . . . , xn), for some ”convergent” non-commutative
power series Fj, such that the mapping (x1, . . . , xn) 7→ (y1, . . . , yn)
can be inverted by some other power series. Then

χ(y1, . . . , yn) = χ(x1, . . . , xn) + n log(| det |J (x1, . . . , xn),

where J is a non-commutative Jacobian and det is the Kadison-
Fuglede determinant.

1. Applications to operator algebras

One hopes that χ(x1, . . . , xn) enodes information about the von Neu-
mann algebra vN(x1, . . . , xn).

Define the “free entropy dimension” of the n-tuple x1, . . . , xn by

δ(x1, . . . , xn) = n + lim
ε↘0

χ(x1 + εs1, . . . , xn + εsn)

| log ε|
,

where s1, . . . , sn is a free semicircular family free from {x1, . . . , xn}.
The entropy dimension problem is to establish the validity (or false-

hood) of the implication

vN(x1, . . . , xn) = vN(y1, . . . , yn) =⇒ δ(x1, . . . , xn) = δ(y1, . . . , yn).

In the case of free group factors L(Fn) = vN(s1, . . . , sn) we have

χ(s1, . . . , sn) > −n and δ(s1, . . . , sn) = n.

Let P be some property that a vN -algebra A may or may not have.
Assume that we can verify the implication

A has P =⇒ χ(x1, . . . , xn) = −∞

for any generating set vN(x1, . . . , xn) = A. Then a vN-algebra for
which we have at least one generating set with finite free entropy cannot
have this property P .

This idea is the basis of the proof of the following theorem.
Theorem: Let A be a II1-factor generated by selfadjoint operators

x1, . . . , xd. Assume that χ(x1, . . . , xd) > −∞. Then

(1) A does not have property Γ (Voiculescu).
(2) A does not have a Cartan subalgebra (Voiculescu). Recall that

a Cartan subalgebra of A is a maximal abelian vN -subalgebra
B such that {u ∈ A : u unitary, uBu∗ = B} generates A. This
shows that A cannot be obtained from ergodic measurable re-
lations.

(3) A is prime, i.e. A cannot be decomposed as A = A1 ⊗ A2 for
II1-factors A1,A2 (Liming Ge).
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Corollary: All this applies in the case of the free group factor
L(Fn).

We will prove part (1) of the above theorem, although the absence
of property Γ for L(Fn) is an old result of Murray and von Neumann
which can be proved more directly without using free entropy.

Definition: A bounded sequence (tk)k≥0 in (A, τ) is central if

lim
k→∞

‖xtk − tkx‖2 = 0

for all x ∈ A. If

lim
k→∞

‖tk − τ(tk) · 1‖2 = 0,

then (tk)k is said to be trivial. (A, τ) has property Γ if there exists a
non-trivial central sequence in A.

2. Sketch of Proof

We now give an outline of Part (1) of the above Theorem, namely
that when selfadjoint operators x1, . . . , xd have the property that χ(x1, . . . , xd) >
−∞, then the von Neumann algebra they generate cannot have prop-
erty Γ.

So let A = vN(x1, . . . , xd) have property Γ; we must prove that this
implies χ(x1, . . . , xd) = −∞. Let (tk)k be a non-trivial central sequence
in A.

By applying functional calculus to this sequence, we may replace
the tk’s with a non-trivial central sequence of orthogonal projections
(pk)k, and assume the existence of a real number θ in the open interval
(0, 1/2) such that

θ < τ(pk) < 1− θ for all k

and

lim
k→∞

‖[x, pk]‖2 = 0 for all x ∈ A.

We then prove the following key lemma:

Lemma: Let (A, τ) be a W ∗-probability space generated by self-
adjoint elements x1, . . . , xd satisfying τ(x2

i ) ≤ 1. Let 0 < θ < 1
2

be
a constant and p ∈ A a projection such that θ < τ(p) < 1 − θ and
‖[p, xi]‖2 < ω. Then there exist positive constants C1, C2 depending
only on d and θ such that

χ(x1, . . . , xd) ≤ C1 + C2 log ω.
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Assuming this is proved, choose p = pk. If k → ∞, we can take
ω → 0. Thus we get

χ(x1, . . . , xd) ≤ C1 + C2 log ω

for all ω > 0, implying

χ(x1, . . . , xd) = −∞.

It remains to prove the lemma. Take

(A1, . . . , Ad) ∈ Γ(x1, . . . , xd; N, ε, k)

for N, k sufficiently large and ε sufficiently small. As p can be approxi-
mated by polynomials in x1, . . . , xd and by deforming things again a bit
by functional calculus, we find a projection matrix Q ∈ MN(C) whose
range is a subspace of dimension q = bNτ(p)c and such that

‖[Ai, Q]‖2 < 2ω.

This Q is of the form

Q = U

(
Iq 0
0 0N−q

)
U∗

for some U ∈ U(N)/U(q)× U(N − q). Write

UA∗i U =

(
Bi C∗i
Ci Di

)
Then

‖[Ai, Q]‖2 ≤ 2ω =⇒ ‖
(

Bi C∗i
Ci Di

)
,

(
1 0
0 0

)
‖2 < 2ω,

and

‖
(

0 −Ci

C∗i 0

)
‖2 =

√
2

N
Tr(CiC∗i ) =⇒ Tr(CiC

∗
I ) <

N

2
(2ω)2 = 2Nω2.

Now

τ(x2
i ) ≤ 1 =⇒ tr(A2

i ) ≤ 1 + ε =⇒ Tr(A2
i ) ≤ (1 + ε)N ≤ 2N

for ε ≤ 1.
Denote by Bp(R) the ball of radius R in Rp centred at the origin. The

Lebesgue measure of Bp(R) is given in terms of the Gamma function
as

Λ(Bp(R)) =
Rpπp/2

Γ(1 + p
2
)
.
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Now cover Γ(x1, . . . , xd; N, ε, k) by a union of products of balls:

Γ(x1, . . . , xd; N, ε, k) ⊆⋃
U∈U(N)/U(q)×U(N−q)

[U∗Bq2(
√

2N)×B2q(N−q)(ω
√

2N)×B(N−q)2(
√

2N)U ]d.

This does not give directly an estimate for the volume of our set Γ,
as we have here a covering by infinitely many sets. However, we can
reduce this to a finite cover by approximating the appearing U ’s from
elements from a finite δ-net.

By a result of Szarek, for any δ > 0 there exists a δ-net (Us)s∈S in
the Grassmannian U(N)/U(q)× U(N − q) with

|S| ≤ (Cδ−1)N2−q2−(N−q)2

with C a universal constant.
For (A1, . . . , Ad), Q, U as above, we have: there exists s ∈ S such

that ‖U − Us‖ ≤ δ implies

‖[U∗s AiUs, U
∗QU ]‖2 ≤ 2ω + 8δ.

Thus covering Γ(x1, . . . , xd; N, ε, k) with the δ-net we have

Γ(x1, . . . , xd; N, ε, k) ⊆
⋃
s∈S

[U∗s Bq2(
√

2N)×B2q(N−q)(ω
√

2N)×B(N−q)2(
√

2N)Us]
d,

and hence

Λ(Γ(x1, . . . , xd; N, ε, k)) ≤

(Cδ−1)N2−q2−(N−q)2Λ(U∗s Bq2(
√

2N))dΛ(B2q(N−q)(ω
√

2N))dΛ(B(N−q)2(
√

2N)Us)
d,

which simplifies to the bound

(Cδ−1)2q(N−q) (2N)(N−q)2/2πN2/2

Γ(1 + q2/2)dΓ(1 + q(N − q))dΓ(1 + (N − q)2/2)d
.

Thus

1

N2
log Λ(Γ(x1, . . . , xd; N, ε, k)) +

d

2
log N ≤

C1 +
2q(N − q)

N2
(log δ−1 + d log(ω + 4δ)) ≤ C̃ log ω

for d ≥ 2, where the new constant C̃ ≥ 0 is gotten by taking δ = ω :

C̃ = − log ω + d log ω + d log 4.


