# Dynamics of Bose-Einstein Condensates 

> Horng-Tzer Yau

Joint work with László Erdős and Benjamin Schlein

## INTERACTING MANY-BODY QUANTUM SYSTEMS

$\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{N}\right) \in \mathbb{R}^{3 N}$ position of the particles.
Symmetric wave function: $\psi_{N}\left(x_{1}, \ldots, x_{N}\right) \in L^{2}\left(\mathbb{R}^{3 N}\right)$

$$
H_{N}=\sum_{j=1}^{N}\left[-\Delta_{x_{j}}+U\left(x_{j}\right)\right]+\lambda \sum_{i<j} V\left(x_{i}-x_{j}\right)
$$

$U$ is a one-body background ("trapping") potential $V$ is the interaction potential

$$
i \partial_{t} \psi_{N, t}=H_{N} \psi_{N, t}, \quad i \partial_{t} \gamma_{N, t}=\left[H, \gamma_{N, t}\right], \quad[A, B]=A B-B A
$$

with $\gamma_{N, t}:=\left|\psi_{N, t}\right\rangle\left\langle\psi_{N, t}\right|$ density matrix (1 dim. projection).

One particle density matrix:
$\gamma_{\psi}^{(1)}(x, y):=\int \psi\left(x, x_{2} \cdots x_{N}\right) \bar{\psi}\left(y, x_{2}^{\prime} \cdots x_{N}^{\prime}\right) d x_{2} \cdots d x_{N} d x_{2}^{\prime} \cdots d x_{N}^{\prime}$

Time-independent BEC in Scaling Limit

$$
H_{N}=\sum_{j=1}^{N}\left[-\Delta_{x_{j}}+U\left(x_{j}\right)\right]+\frac{1}{N} \sum_{i<j} N^{3} V\left(N\left(x_{i}-x_{j}\right)\right)
$$

Approx Dirac delta interaction with range $1 / N$ ("hard core")
[Dyson, Lieb-Seiringer-Yngvason, Lieb-Seiringer]

- Ground state energy is given by the Gross-Pitaevskii functional

$$
\begin{gathered}
\lim _{N \rightarrow \infty} \inf \operatorname{spec} \frac{H_{N}}{N}=\inf _{\varphi,\|\varphi\|=1} \mathcal{E}_{G P}\left(8 \pi a_{0}, \varphi\right), \quad a_{0}=\text { scatt. length of } V \\
\mathcal{E}_{G P}(\sigma, \varphi):=\int|\nabla \varphi|^{2}+U|\varphi|^{2}+\frac{\sigma}{2}|\varphi|^{4}
\end{gathered}
$$

- Complete condensation in ground state:

$$
\gamma_{N}^{(1)}\left(x ; x^{\prime}\right) \rightarrow \phi(x) \overline{\phi\left(x^{\prime}\right)}, \quad \phi=\text { minimizer of } \mathcal{E}_{G P}
$$

## Time Dependent GROSS-PITAEVSKII (GP) Theory

The GP energy functional also describes the evolution:

$$
\gamma_{N, 0}^{(1)} \rightarrow \varphi(x) \bar{\varphi}\left(x^{\prime}\right) \quad \Longrightarrow \quad \gamma_{N, t}^{(1)} \rightarrow \varphi_{t}(x) \bar{\varphi}_{t}\left(x^{\prime}\right)
$$

The condensate wave fn. evolves according to a NLS

$$
i \partial_{t} \varphi_{t}=\left[-\Delta+U+8 \pi a_{0}\left|\varphi_{t}\right|^{2}\right] \varphi_{t}, \quad \varphi_{t=0}=\varphi
$$

Many-body effects \& corr $\rightarrow$ non-linear on-site self-interaction

Experiments of Bose-Einstein Condensation: Trap Bose gas and observe its evolution after the trap removed.

Dynamics: The ground state of trapped BEC is a highly excited state for the system without traps. GP describes also excited states and their evolution!

Cannot be completely correct. Now set $U=0$.
$H_{N}=\sum_{j=1}^{N}-\Delta_{x_{j}}+\frac{1}{N} \sum_{i<j} V_{\beta}\left(x_{i}-x_{j}\right), \quad V_{\beta}(x):=N^{3 \beta} V\left(N^{\beta} x\right), 0<\beta \leq 1$
THEOREM: [Erdős-Schlein-Y, 2008] Assume $V \geq 0$ and $V(x) \leq C(1+|x|)^{-5}$. Suppose the initial state satisfies

$$
\gamma_{N, 0}^{(1)}(x, y) \rightarrow u_{0}(x) \bar{u}_{0}(y), \quad u \in H^{1}\left(\mathbb{R}^{3}\right)
$$

Then for every $k \geq 1$ and $t>0$ fixed

$$
\begin{gathered}
\gamma_{N, t}^{(k)} \rightarrow\left|u_{t}\right\rangle\left\langle\left. u_{t}\right|^{\otimes k} \quad N \rightarrow \infty\right. \\
i \partial_{t} u_{t}=-\Delta u_{t}+\sigma\left|u_{t}\right|^{2} \phi_{t}, \quad \sigma=\left\{\begin{array}{lll}
b_{0} & \text { if } & 0<\beta<1 \\
8 \pi a_{0} & \text { if } & \beta=1
\end{array}\right.
\end{gathered}
$$

where $a_{0}$ is the scatt. length of $V$ and $b_{0}=\int \mathrm{d} x V(x) \neq 8 \pi a_{0}$

Adami, Bardos, Golse, Teta: one dim result. Use $\delta \leq-\Delta$ in $\mathbb{R}$ and the EY approach.

## SCATTERING LENGTH

$$
\begin{gathered}
\left(-\Delta+\frac{1}{2} V(x)\right)(1-w(x))=0 \quad \text { with } w(x) \rightarrow 0 \text { for }|x| \rightarrow \infty \\
w(x)=\frac{a_{0}}{|x|} \quad \text { for }|x| \rightarrow \infty \quad \int \mathrm{d} x V(x)(1-w(x))=8 \pi a_{0}
\end{gathered}
$$

Dyson's trial function for ground state:

$$
W_{N}(\mathrm{x})=\prod_{j<k}\left[1-w\left(N\left(x_{j}-x_{k}\right)\right)\right]
$$

States with and without short range structure:

$$
\begin{aligned}
& \psi_{N}(\mathrm{x})=W_{N}(\mathrm{x}) \prod_{j=1}^{N} u_{0}\left(x_{j}\right), \quad \phi_{N}=\prod_{j=1}^{N} u_{0}\left(x_{j}\right) \\
& \lim _{N \rightarrow \infty} N^{-1}\left\langle\psi_{N}, H_{N} \psi_{N}\right\rangle=\int|\nabla u(x)|^{2}+4 \pi a_{0}|u(x)|^{4} \\
& \lim _{N \rightarrow \infty} N^{-1}\left\langle\phi_{N}, H_{N} \phi_{N}\right\rangle=\int\left|\nabla u_{0}(x)\right|^{2}+\frac{b_{0}}{2}|u(x)|^{4}
\end{aligned}
$$

The theorem for $\beta=1$ holds for $\psi_{N}$ and $\phi_{N}$.

Our Theorem shows that the local singular structure is preserved by the $N$-body evolution for initial state $\psi_{N}$. For product initial state, it shows that the local structure emerges.

$$
\begin{gathered}
i \partial_{t} \phi_{N, t}=H_{N} \phi_{N, t}, \phi_{N, t=0}=\phi_{N} \\
N^{-1}\left\langle\phi_{N, t}, H_{N} \phi_{N, t}\right\rangle=N^{-1}\left\langle\phi_{N}, H_{N} \phi_{N}\right\rangle \\
\rightarrow \mathcal{E}_{G P}\left(b_{0}, u_{0}\right) \neq \mathcal{E}_{G P}\left(8 \pi a_{0}, u_{0}\right)=\mathcal{E}_{G P}\left(8 \pi a_{0}, u_{t}\right)
\end{gathered}
$$

For product initial state, the GP energy functional (with the coupling constant $8 \pi a_{0}$ ) does not describe the energy of the $N$-body system . But the time dependent one particle density matrices in a weak limit is still given by the GP equation with coupling constant $8 \pi a_{0}$.

Mathematically: The convergence of the time dependent density matrices is so weak that the energy does not converge.

Physically: For states with product initial data, the short scale behavior will show the characteristic $1-w\left(N\left(x_{i}-x_{j}\right)\right)$ structure after a short initial layer. This lowers the energy of the system locally. The energy lost was transfered to energy in other scales.

NONLINEAR HARTREE EQUATION: $\beta=0, V_{\beta}=V$

$$
i \partial_{t} \varphi_{t}=-\Delta \varphi_{t}+\left(V \star\left|\varphi_{t}\right|^{2}\right) \varphi_{t}
$$

Hepp: smooth potential, Ginibre-Velo: use coherent state. SchleinRodnianski apply to states with fix number of particles with Coulomb potential.

Spohn: bounded potential, BBGKY hierarchy.

Bardos, Golse and Mauser: convergence to hierarchy for Coulomb case, but no uniqueness nor a priori estimates.

Erdos-Y: Uniqueness of Coulomb case and a priori estimate.
bosonic star (Elgart-Schlein, Frohlich-Schwarz)

## Fundamental difficulty of $N$-particle analysis ( $N \gg 1$ )

There is no good norm. The conserved $L^{2}$-norm is too strong.
Let $\Psi=\otimes_{1}^{N} f, \Phi=\otimes_{1}^{N} g$, then $\|\Psi-\Phi\|^{2}=2-2\langle f, g\rangle^{N} \approx 2$.
Problem: $\psi\left(x_{1}, \ldots x_{N}\right)$ carries info of all particles (too detailed).
Keep only information about the $k$-particle correlations:

$$
\gamma_{\psi}^{(k)}\left(X_{k}, X_{k}^{\prime}\right):=\int \psi\left(X_{k}, Y_{N-k}\right) \bar{\psi}\left(X_{k}^{\prime}, Y_{N-k}\right) d Y_{N-k}
$$

where $X_{k}=\left(x_{1}, \ldots x_{k}\right)$. It monitors only $k$ particles.

Quantum analog of the marginals of a probability density.

It is an operator acting on the $k$-particle space.

$$
H=-\sum_{j=1}^{N} \Delta_{j}+\frac{1}{N} \sum_{j<k} V_{\beta}\left(x_{j}-x_{k}\right), \quad i \partial_{t} \gamma_{N, t}=\left[H, \gamma_{N, t}\right]
$$

The BBGKY Hierarchy: The family $\left\{\gamma_{N, t}^{(k)}\right\}_{k=1}^{N}$ satisfies

$$
\begin{aligned}
i \partial_{t} \gamma_{N, t}^{(k)}= & \sum_{j=1}^{k}\left[-\Delta_{x_{j}}, \gamma_{N, t}^{(k)}\right] \\
& +\sum_{j=1}^{k} \operatorname{Tr}_{k+1}\left[V_{\beta}\left(x_{j}-x_{k+1}\right), \gamma_{N, t}^{(k+1)}\right]+\text { lower order terms } \\
& \operatorname{Tr}_{2}\left[V\left(x_{1}-x_{2}\right), \gamma^{(2)}\right] \\
=\int & \mathrm{d} x_{2}\left(V\left(x_{1}-x_{2}\right)-V\left(x_{1}^{\prime}-x_{2}\right)\right) \gamma^{(2)}\left(x_{1}, x_{2} ; x_{1}^{\prime}, x_{2}\right)
\end{aligned}
$$

## Derivation of the Hartree equation: $\beta=0, V_{\beta}=V$

Special case: $k=1$ :

$$
\begin{aligned}
& i \partial_{t} \gamma_{N, t}^{(1)}\left(x_{1} ; x_{1}^{\prime}\right)=\left(-\Delta_{x_{1}}+\Delta_{x_{1}^{\prime}}\right) \gamma_{N, t}^{(1)}\left(x_{1} ; x_{1}^{\prime}\right) \\
& \quad+\int \mathrm{d} x_{2}\left(V\left(x_{1}-x_{2}\right)-V\left(x_{1}^{\prime}-x_{2}\right)\right) \gamma_{N, t}^{(2)}\left(x_{1}, x_{2} ; x_{1}^{\prime}, x_{2}\right)+o(1) .
\end{aligned}
$$

To get a closed equation for $\gamma_{N, t}^{(1)}$, we assume Propagation of chaos:

If initially $\gamma_{N, 0}^{(2)}=\gamma_{N, 0}^{(1)} \otimes \gamma_{N, 0}^{(1)}$, then hopefully $\gamma_{N, t}^{(2)} \approx \gamma_{N, t}^{(1)} \otimes \gamma_{N, t}^{(1)}$.
Assume that $\gamma_{N, t}^{(1)} \rightarrow \omega_{t}$. With $\varrho_{t}(x):=\omega_{t}(x ; x)$. We then have the Hartree eq

$$
i \partial_{t} \omega_{t}=\left[-\Delta+V * \varrho_{t}, \omega_{t}\right]
$$

The Hartree Hierarchy $\beta=0$ : As $N \rightarrow \infty$, the BBGKY hierarchy formally converges to the Hartree hierarchy

$$
i \partial_{t} \gamma_{\infty, t}^{(k)}=\sum_{j=1}^{k}\left[-\Delta_{x_{j}}, \gamma_{\infty, t}^{(k)}\right]+\sum_{j=1}^{k} \operatorname{Tr}_{k+1}\left[V\left(x_{j}-x_{k+1}\right), \gamma_{\infty, t}^{(k+1)}\right]
$$

Remark:

$$
\gamma_{t}^{(k)}\left(\mathbf{x}_{k} ; \mathbf{x}_{k}^{\prime}\right)=\prod_{j=1}^{k} \phi_{t}\left(x_{j}\right) \overline{\phi_{t}}\left(x_{j}^{\prime}\right) \quad\left(\gamma_{t}^{(k)}=\left|\phi_{t}\right\rangle\left\langle\left.\phi_{t}\right|^{\otimes k}\right)\right.
$$

is a solution of the Hartree hierarchy if $\phi_{t}$ satisfies

$$
i \partial_{t} \phi_{t}=-\Delta \phi_{t}+\left(V *\left|\phi_{t}\right|^{2}\right) \phi_{t}
$$

## Strategy for Rigorous Derivation $\beta=0$ :

- Prove the compactness of $\left\{\gamma_{N, t}^{(k)}\right\}_{k=1}^{N}$ with respect to some weak topology
- Prove that the limit point $\left\{\gamma_{\infty, t}^{(k)}\right\}_{k \geq 1}$ is a solution of the infinite Hartree equation.
- Prove the apriori estimate needed for the uniqueness of the hierarchy.
- Prove the uniqueness (well-poseness) of the solution of the infinite Hartree hierarchy.

Main Difficulties for Rigorous Derivation $\beta=1$ :

1. Derive the GP hierarchy: Suppose $\gamma_{N, t}^{(k)} \rightarrow \gamma_{\infty, t}^{(k)}$ as $N \rightarrow \infty$. Then:
$i \partial_{t} \gamma_{\infty, t}^{(k)}=\sum_{j=1}^{k}\left[-\Delta_{x_{j}}, \gamma_{\infty, t}^{(k)}\right]+8 \pi a_{0} \sum_{j=1}^{k} \operatorname{Tr}_{k+1}\left[\delta\left(x_{j}-x_{k+1}\right), \gamma_{\infty, t}^{(k+1)}\right]$

## Emergence of the scattering length:

$$
\text { Suppose } \gamma_{N, t}^{(2)}\left(x_{1}, x_{2} ; x_{1}^{\prime}, x_{2}\right)=\left[1-w\left(N\left(x_{1}-x_{2}\right)\right)\right] \gamma_{N, t}^{(1)}\left(x_{1}, x_{1}^{\prime}\right) \gamma_{N, t}^{(1)}\left(x_{2}, x_{2}\right)
$$

$$
\int d x_{2} V_{\beta}\left(x_{1}-x_{2}\right)\left[1-w\left(N\left(x_{1}-x_{2}\right)\right)\right] f\left(x_{2}\right)=f\left(x_{1}\right) \times \begin{cases}8 \pi a_{0} & \text { if } \beta=1 \\ b_{0} & \text { if } 0<\beta<1\end{cases}
$$



2. Well-poseness of the GP hierarchy in the $H_{1}$ class:

$$
\operatorname{Tr}\left(1-\Delta_{1}\right) \ldots\left(1-\Delta_{k}\right) \gamma_{\infty, t}^{(k)} \leq C^{k}
$$

Tool: Analysis on Feynman diagrams.
3. A priori estimate so that ( $\dagger$ ) holds. Due to the short scale structure, the estimate

$$
\operatorname{Tr}\left(1-\Delta_{x_{1}}\right) \ldots\left(1-\Delta_{x_{k}}\right) \gamma_{N, t}^{(k)} \leq C^{k}
$$

is wrong.

Only after taking the weak limit so that the short scale structure disappears, can such bounds hold.

Klainerman-Machedon: Uniqueness via space-time norm.

## Method of Moments of Energy-the second moment

Proposition: For any wave function $\psi_{N}$ :

$$
\left\langle\psi_{N}, H_{N}^{2} \psi_{N}\right\rangle \geq C N^{2} \int \mathrm{dx}\left|\nabla_{1} \nabla_{2} \phi_{12}\right|^{2}
$$

with $\phi_{12}(\mathrm{x})=\left[1-w\left(N\left(x_{1}-x_{2}\right)\right)\right]^{-1} \psi_{N}(\mathrm{x})$.

Consequence: any eigenfunction with energy $\simeq N$ must have the short scale structure $\left[1-w\left(N\left(x_{1}-x_{2}\right)\right)\right]$ when $x_{1}$ is near $x_{2}$.

- BEC for ground state $\psi$ without scaling: Off-diagonal long range order (Yang)
- How to interpret systems with negative scattering length?

$$
\inf _{u} \int|\nabla u|^{2} \mathrm{~d} x+\int U|u|^{2}-4 \pi a_{0} \int|u|^{4} \mathrm{~d} x=-\infty
$$

The BEC cannot be the ground state! BEC for system with negative correlation length is a metastable state.

- fermi systems

