Spectral gaps for periodic Schroedinger operators with magnetic wells

Yuri Kordyukov Institute of Mathematics Russian Academy of Sciences Ufa, Russia

The setting

- M a noncompact oriented smooth manifold of dimension $n \ge 2$ such that $H^1(M, \mathbb{R}) = 0$ (\iff each closed one-form is exact).
- Γ a finitely generated, discrete group, which acts properly discontinuously on M so that M/Γ is a compact smooth manifold.

EXAMPLE: $M = \mathbb{R}^n$, $\Gamma = \mathbb{Z}^n$.

EXAMPLE: M — the Poincaré upper-half plane, Γ — the fundamental group of a compact Riemann surface.

The setting

- $g = \sum_{i=1}^{n} \sum_{j=1}^{n} g_{ij}(x) dx^{i} dx^{j}$ a Γ -invariant Riemannian metric on M:
- $\mathbf{B} = \sum_{i < j} b_{ij}(x) dx^i \wedge dx^j$ a real-valued Γ -invariant closed 2-form on M.
- ASSUME: there exists a 1-form $\mathbf{A} = \sum_{i=1}^{n} a_i(x) dx^i$ on M such that

$$d\mathbf{A} = \mathbf{B} \Longleftrightarrow b_{ij} = \frac{\partial a_j}{\partial x^i} - \frac{\partial a_i}{\partial x^j}.$$

•
$$g_{ij}$$
 and b_{ij} Γ -periodic, a_i , in general, NOT.

The magnetic Schrödinger operator

• The Schrödinger operator with magnetic potential \mathbf{A} — a self-adjoint operator in $L^2(M)$:

$$H^{h} = (ih d + \mathbf{A})^{*}(ih d + \mathbf{A}), \quad h > 0.$$

• In \mathbb{R}^n , a self-adjoint operator in $L^2(\mathbb{R}^n,\sqrt{g}dx)$

$$H^{h} = \frac{1}{\sqrt{g}} \sum_{j,k} (ih\frac{\partial}{\partial x^{j}} + a_{j}(x)) \left[g^{jk}(x)\sqrt{g}(ih\frac{\partial}{\partial x^{k}} + a_{k}(x)) \right]$$

 $(g = \det(g_{ij}), g^{jk}$ the inverse of g_{jk})

– Typeset by $\mbox{Foil}{\rm T}_{\!E}\!{\rm X}$ –

The magnetic Schrödinger operator

• In \mathbb{R}^n with the standard Euclidean metric, a self-adjoint operator in $L^2(\mathbb{R}^n, dx)$

$$H^{h} = \sum_{j=1}^{n} (ih\frac{\partial}{\partial x^{j}} + a_{j}(x))^{2}.$$

THE MAGNETIC BOTTLES

– Typeset by $\mbox{Foil}T_{\!E\!}X$ –

The main problem

- A gap in the spectrum $\sigma(T)$ of a self-adjoint operator T is a maximal interval (a,b) such that

 $(a,b)\cap\sigma(T)=\emptyset$

$$(\iff a \text{ component of } \mathbb{R} \setminus \sigma(T))$$

PROBLEMS:

- Are there gaps in the spectrum of H^h in the semiclassical limit (as $h \rightarrow 0$)?
- Are there arbitrarily many number of gaps in the spectrum of H^h in the semiclassical limit (as $h \rightarrow 0$)?

Some more notation

• $B(x): T_x M \to T_x M, x \in M$ the anti-symmetric linear operator:

$$g_x(B(x)u, v) = \mathbf{B}_x(u, v), \quad u, v \in T_x M.$$

• In local coordinates

$$B_j^i = \sum_{k=1}^n g^{ik} b_{kj} = \sum_{k=1}^n g^{ik} \left(\frac{\partial a_k}{\partial x^j} - \frac{\partial a_j}{\partial x^k} \right).$$

Even more notation

• The intensity of the magnetic field

Tr ⁺(B(x)) =
$$\frac{1}{2}$$
Tr ([B^{*}(x) · B(x)]^{1/2}).

• If $\pm i\lambda_j(x), j = 1, 2, \dots, d, \lambda_j(x) > 0$, are the non-zero eigenvalues of B(x), then

$$\operatorname{Tr}^+(B(x)) = \sum_{j=1}^a \lambda_j(x).$$

– Typeset by $\mbox{Foil}T_{\!E\!}X$ –

Magnetic wells

• DENOTE

$$b_0 = \min\{\operatorname{Tr}^+(B(x)) : x \in M\}.$$

• ASSUME:

there exist a (connected) fundamental domain \mathcal{F} and $\epsilon_0 > 0$ such that

$$\operatorname{Tr}^+(B(x)) \ge b_0 + \epsilon_0, \quad x \in \partial \mathcal{F}.$$

• EXAMPLE: $M = \mathbb{R}^n$, $\Gamma = \mathbb{Z}^n \Longrightarrow \mathcal{F} = (0, 1)^n$ a fundamental domain.

Magnetic wells. II

• For any $\epsilon_1 \leq \epsilon_0$, let

$$U_{\epsilon_1} = \{ x \in \mathcal{F} : \text{Tr}^+(B(x)) < b_0 + \epsilon_1 \}.$$

- U_{ϵ_1} an open subset of \mathcal{F} such that $U_{\epsilon_1} \cap \partial \mathcal{F} = \emptyset$;
- For $\epsilon_1 < \epsilon_0$, $\overline{U_{\epsilon_1}}$ is compact and included in the interior of \mathcal{F} .
- Any connected component of U_{ϵ_1} with $\epsilon_1 < \epsilon_0$ a magnetic well (attached to the effective potential $h \cdot \operatorname{Tr}^+(B(x))$).

Tunneling and localization in wells

- Fix arbitrary $\epsilon_1 < \epsilon_2 < \epsilon_0$.
- H_D^h the Dirichlet realization of H^h in $D = \overline{U_{\epsilon_2}}$ (has discrete spectrum).

THEOREM [B. Helffer, Yu. K., 2006] $\exists C, c, h_0 > 0 \ \forall h \in (0, h_0]$

 $\sigma(H^h) \cap [0, h(b_0 + \epsilon_1)] \subset \{\lambda \in [0, h(b_0 + \epsilon_2)] : \operatorname{dist}(\lambda, \sigma(H_D^h)) < Ce^{-c/\sqrt{h}}\},\$

 $\sigma(H_D^h) \cap [0, h(b_0 + \epsilon_1)] \subset \{\lambda \in [0, h(b_0 + \epsilon_2)] : \operatorname{dist}(\lambda, \sigma(H^h)) < Ce^{-c/\sqrt{h}}\}.$

Quasimodes and spectral gaps

THEOREM: Let $N \ge 1$.

SUPPOSE $\mu_0^h < \mu_1^h < \ldots < \mu_N^h$ a subset of an interval $I(h) \subset [0, h(b_0 + \epsilon_1))$:

1. There exist constants c>0 and $M\geq 1$ such that for any h>0 small enough

$$\mu_j^h - \mu_{j-1}^h > ch^M, \quad j = 1, \dots, N,$$

$$\operatorname{dist}(\mu_0^h, \partial I(h)) > ch^M, \quad \operatorname{dist}(\mu_N^h, \partial I(h)) > ch^M;$$

Quasimodes and spectral gaps

2. Each μ_i^h is an approximate eigenvalue of H_D^h :

$$||H_D^h v_j^h - \mu_j^h v_j^h|| = \alpha_j(h) ||v_j^h||,$$

where
$$v_j^h \in C^\infty_c(D)$$
 and $\alpha_j(h) = o(h^M)$ as $h \to 0$.
THEN

 $\sigma(H^h) \cap I(h)$ has at least N gaps for any sufficiently small h > 0.

Quasimodes and spectral gaps: sketch of the proof

There exists $\lambda_j^h \in \sigma(H^h) \cap I(h), j = 0, 1, \dots, N$

$$\lambda_j^h - \mu_j^h = o(h^M), \quad h \to 0.$$

For any h > 0 small enough, we have

$$\lambda_j^h - \lambda_{j-1}^h > ch^M, \quad j = 1, \dots, N.$$

– Typeset by $\mbox{Foil}T_{\!E\!}X$ –

Quasimodes and spectral gaps: sketch of the proof

DENOTE

 $N_h(\alpha,\beta)$ — the number of eigenvalues of H_D^h on an arbitrary interval $(h\alpha,h\beta)$.

LEMMA: For some C and h_0

 $N_h(\alpha,\beta) \leq Ch^{-n}, \quad \forall h \in (0,h_0].$

Quasimodes and spectral gaps: sketch of the proof

- LEMMA: Let M > 0 and c > 0. There exist C > 0 and $h_1 > 0$ such that
 - IF α^h and β^h are two points in the spectrum of H^h on the interval I(h) with $\beta^h-\alpha^h>ch^M$,
 - THEN for any $h \in (0, h_1]$, $\sigma(H^h) \cap (\alpha^h, \beta^h)$ has at least one gap of length $\geq Ch^{M+n}$.
- By this lemma, each interval $(\lambda_j^h,\lambda_{j+1}^h)$ contains at least one gap in the spectrum of H^h of length $\geq Ch^{M+n}$
- \implies The spectrum of H^h on the interval I(h) has at least N gaps of length $\geq Ch^{M+n}$ for any h small enough.

The general case

THEOREM [B. Helffer, Yu. K., 2007]

• ASSUME: there exist a (connected) fundamental domain ${\cal F}$ and $\epsilon_0>0$ such that

$$\operatorname{Tr}^+(B(x)) \ge b_0 + \epsilon_0, \quad x \in \partial \mathcal{F}.$$

• THEN: for any interval $[\alpha, \beta] \subset [b_0, b_0 + \epsilon_0]$ and for any natural N, there exists $h_0 > 0$ such that, for any $h \in (0, h_0]$,

 $\sigma(H^h) \cap [h\alpha, h\beta]$

has at least N gaps.

The general case: sketch of the proof

• Fix some natural N. Choose some

$$b_0 < \mu_0 < \mu_1 < \ldots < \mu_N < b_0 + \epsilon_1.$$

• For any
$$j = 0, 1, \ldots, N$$
, take any $x_j \in D$ such that

 $\operatorname{Tr}^+(B(x_j)) = \mu_j.$

- Choose a local chart $f_j: U_j \to \mathbb{R}^n$ defined in a neighborhood U_j of x_j with local coordinates $X = (X_1, X_2, \dots, X_n) \in \mathbb{R}^n$.
- Suppose that
 - $f_j(U_j)$ is a ball B = B(0,r) in \mathbb{R}^n , $f_j(x_j) = 0$,
 - the Riemannian metric at x_j becomes the standard Euclidean metric on \mathbb{R}^n , - $\mathbf{B}(x_j) = \sum_{k=1}^{d_j} \mu_{jk} dX_{2k-1} \wedge dX_{2k}$.

• Let φ_j be a smooth function on B such that

$$|\mathbf{A}(X) - d\varphi_j(X) - A_j^q(X)| \le C|X|^2,$$

where
$$A_j^q(X) = \frac{1}{2} \sum_{k=1}^{d_j} \mu_{jk} \left(X_{2k-1} dX_{2k} - X_{2k} dX_{2k-1} \right).$$

- Write $X'' = (X_{2d_j+1}, ..., X_n).$
- Let $\chi_j \in C_c^{\infty}(D)$ supported in a neighborhood of x_j , and $\chi_j(x) \equiv 1$ near x_j .

$$v_j^h \in C_c^\infty(D)$$
 defined as

$$v_j^h(x) = \chi_j(x) \exp\left(-i\frac{\varphi_j(x)}{h}\right) \times \\ \times \exp\left(-\frac{1}{4h}\sum_{k=1}^{d_j}\mu_{jk}(X_{2k-1}^2 + X_{2k}^2)\right) \exp\left(-\frac{|X''|^2}{h^{2/3}}\right).$$

• THEN

$$\|(H_D^h - h\mu_j)v_j^h\| \le Ch^{4/3} \|v_j^h\|.$$

• So Theorem follows from the abstract result with

$$\mu_j^h = h\mu_j, \quad M = 1.$$

The general case: refined version

THEOREM [B. Helffer, Yu. K., 2008] ASSUME:

• there exist a (connected) fundamental domain \mathcal{F} and $\epsilon_0 > 0$ such that

$$\operatorname{Tr}^+(B(x)) \ge b_0 + \epsilon_0, \quad x \in \partial \mathcal{F}.$$

 $\bullet\,$ the rank of ${\bf B}$ is constant in an open set $U\subset M$

The general case: refined version

THEN: for any interval

$$[\alpha,\beta] \subset \mathrm{Tr}^+ B(U),$$

there exist $h_0 > 0$ and C > 0 such that

 $\sigma(H^h) \cap [h\alpha, h\beta]$

has at least $[Ch^{-1/3}]$ gaps for any $h \in (0, h_0]$.

Discrete potential wells

THEOREM [B. Helffer, Yu. K. 2007] ASSUME

• $b_0 = 0$, and there exist a (connected) fundamental domain \mathcal{F} and $\epsilon_0 > 0$ such that

$$\operatorname{Tr}^+(B(x)) \ge \epsilon_0, \quad x \in \partial \mathcal{F};$$

• there exists a zero \bar{x}_0 of B, $B(\bar{x}_0) = 0$, such that $\exists C > 0$

$$C^{-1}|x - x_0|^k \le \text{Tr}^+(B(x)) \le C|x - x_0|^k$$

for all x in some neighborhood of x_0 with some integer k > 0.

Discrete potential wells

THEN

for any natural N, there exist C > 0 and $h_0 > 0$ such that

 $\sigma(H^h) \cap [0, Ch^{\frac{2k+2}{k+2}}]$

has at least N gaps for any $h \in (0, h_0)$.

Discrete potential wells: model operator

• ASSUME: \bar{x}_0 a zero of **B** such that, for all x in some neighborhood of x_0 ,

$$C^{-1}|x - x_0|^k \le \operatorname{Tr}^+(B(x)) \le C|x - x_0|^k.$$

 \bullet Write the 2-form ${\bf B}$ in the local coordinates

$$f: U(\bar{x}_0) \to f(U(\bar{x}_0)) = B \subset \mathbb{R}^n, \quad f(\bar{x}_0) = 0,$$

as

$$\mathbf{B}(X) = \sum_{1 \le l < m \le n} b_{lm}(X) \, dX_l \wedge dX_m, \quad X = (X_1, \dots, X_n) \in B.$$

– Typeset by $\mbox{Foil}T_{\!E\!}X$ –

Discrete potential wells: model operator

• \mathbf{B}^0 the 2-form in \mathbb{R}^n with polynomial components

$$\mathbf{B}^{0}(X) = \sum_{1 \le l < m \le n} \sum_{|\alpha| = k} \frac{X^{\alpha}}{\alpha!} \frac{\partial^{\alpha} b_{lm}}{\partial X^{\alpha}}(0) \, dX_{l} \wedge dX_{m},$$

• $\exists \mathbf{A}^0$ a 1-form on \mathbb{R}^n with polynomial components:

$$d\mathbf{A}^0(X) = \mathbf{B}^0(X), \quad X \in \mathbb{R}^n.$$

Discrete potential wells: model operator

• $K^h_{\bar{x}_0}$ a self-adjoint differential operator in $L^2(\mathbb{R}^n)$:

$$K_{\bar{x}_0}^h = (ih \, d + \mathbf{A}^0)^* (ih \, d + \mathbf{A}^0),$$

where the adjoints are taken with respect to the Hilbert structure in $L^2(\mathbb{R}^n)$ given by the flat Riemannian metric $(g_{lm}(0))$ in \mathbb{R}^n :

$$K_{\bar{x}_0}^h = \sum_{j,k} g^{jk}(0) \left(ih \frac{\partial}{\partial x^j} + a_j^0(x) \right) \left(ih \frac{\partial}{\partial x^k} + a_k^0(x) \right).$$

Discrete potential wells: construction of quasimodes

• For any $j \in \mathbb{N}$, let

$$K^h_{\bar{x}_0}w^h_j = h^{\frac{2k+2}{k+2}}\lambda_j w^h_j, \quad w^h_j \in L^2(\mathbb{R}^n).$$

- Let $\chi \in C_c^{\infty}(U(\bar{x}_0))$ equal 1 in a neighborhood of \bar{x}_0 .
- Define

$$v_j^h(x) = \chi(x)w_j^h(x).$$

Discrete potential wells: construction of quasimodes

• We have

$$\| \left(H_D^h - h^{\frac{2k+2}{k+2}} \lambda_j \right) v_j^h \| \le C_j h^{\frac{2k+3}{k+2}} \| v_j^h \|.$$

- For a given natural N, choose any $C > \lambda_{N+1}$.
- Then the result follows from the abstract theorem with

$$\mu_j^h = h^{\frac{2k+2}{k+2}} \lambda_j.$$

Discrete potential wells: spectral concentration

```
THEOREM [Yu. K. 2005]
ASSUME
```

• $b_0 = 0$, and there exist a (connected) fundamental domain \mathcal{F} and $\epsilon_0 > 0$ such that

$$\operatorname{Tr}^+(B(x)) \ge \epsilon_0, \quad x \in \partial \mathcal{F};$$

• For some integer k > 0, $B(x_0) = 0 \Rightarrow \exists C > 0$

$$C^{-1}|x - x_0|^k \le \operatorname{Tr}^+(B(x)) \le C|x - x_0|^k$$

for all x in some neighborhood of x_0 .

Discrete potential wells: spectral concentration

THEN

there exists an increasing sequence

$$\lambda_1 < \lambda_2 < \lambda_3 < \dots, \quad \lambda_m \to \infty \text{ as } m \to \infty,$$

such that for any a and b with $\lambda_m < a < b < \lambda_{m+1}$,

$$[ah^{\frac{2k+2}{k+2}}, bh^{\frac{2k+2}{k+2}}] \cap \sigma(H^h) = \emptyset.$$

– Typeset by $\mbox{Foil}T_{\!E\!}X$ –

Hypersurface potential wells

ASSUME:

• $b_0 = 0$, and there exist a (connected) fundamental domain \mathcal{F} and $\epsilon_0 > 0$ such that

$$\operatorname{Tr}^+(B(x)) \ge \epsilon_0, \quad x \in \partial \mathcal{F};$$

• there is an open subset U of \mathcal{F} such that the zero set of \mathbf{B} in U is a smooth oriented hypersurface S, and, moreover, there are constants $k \in \mathbb{N}$ and C > 0 such that for all $x \in U$ we have:

$$C^{-1}d(x,S)^k \le |B(x)| \le Cd(x,S)^k.$$

Hypersurface potential wells: more notation

- N the external unit normal vector to S, and \tilde{N} an arbitrary extension of N to a smooth vector field on U;
- $\omega_{0,1}$ the smooth one form on S defined, for any vector field V on S, by

$$\langle V, \omega_{0,1} \rangle(y) = \frac{1}{k!} \tilde{N}^k(\mathbf{B}(\tilde{N}, \tilde{V}))(y), \quad y \in S,$$

where \tilde{V} is a C^{∞} extension of V to U.

 $\omega_{0,1}$ is the leading part of ${f B}$ at S

Hypersurface potential wells: more notation

• By assumption, we have

$$\omega_{0,1}(x) \neq 0, \quad x \in S.$$

• Denote

$$\omega_{\min}(B) = \inf_{x \in S} |\omega_{0,1}(x)| > 0.$$

Hypersurface potential wells: more notation

• For any $\alpha \in \mathbb{R}$, the self-adjoint second order differential operator in $L^2(\mathbb{R}, dt)$:

$$P(\alpha) = -\frac{d^2}{dt^2} + \left(\frac{1}{k+1}t^{k+1} - \alpha\right)^2.$$

- Denote by $\lambda_0(\alpha)$ the bottom of the spectrum of the operator $P(\alpha)$.
- One can show that

$$\hat{\nu} := \inf_{\alpha \in \mathbb{R}} \lambda_0(\alpha) > -\infty.$$

Hypersurface potential wells: the main result

THEOREM: [B. Helffer, Yu. K. 2008]

For any interval

$$(a,b) \subset (\hat{\nu}\,\omega_{\min}(B)^{\frac{2}{k+2}},+\infty),$$

there exist $h_0 > 0$ and C > 0 such that

$$\sigma(H^h)\bigcap[h^{\frac{2k+2}{k+2}}a,h^{\frac{2k+2}{k+2}}b]$$

has at least $[Ch^{-\frac{2}{3(k+2)}}]$ gaps for any $h \in (0, h_0]$.

Hypersurface potential wells: model operator

- g_0 the Riemannian metric on S induced by g.
- One can assume that U is an open tubular neighborhood of S:

$$\Theta: (-\varepsilon_0, \varepsilon_0) \times S \xrightarrow{\cong} U,$$

such that $\Theta |_{\{0\} \times S} = \text{id}$ and $(\Theta^* g - \tilde{g}_0) |_{\{0\} \times S} = 0$, where a Riemannian metric \tilde{g}_0 on $(-\varepsilon_0, \varepsilon_0) \times S$:

$$\tilde{g}_0 = dt^2 + g_0$$

• By adding to A the exact one form $d\phi$, where ϕ is the function satisfying

$$N(x)\phi(x) = -\langle N, \mathbf{A} \rangle(x), \quad x \in U,$$

$$\phi(x) = 0, \quad x \in S,$$

we may assume that $\langle N, \mathbf{A} \rangle(x) = 0, x \in U$.

• $\omega_{0.0}$ the one form on S induced by A:

$$\omega_{0.0} = i_S^* \mathbf{A}$$

where i_S is the embedding of S into M.

• $\omega_{0,1}$ the one form on S defined, for any vector field V on S, by

$$\langle V, \omega_{0,1} \rangle(y) = \frac{1}{k!} \tilde{N}^k(\mathbf{B}(\tilde{N}, \tilde{V}))(y), \quad y \in S,$$

where \tilde{V} is a C^{∞} extension of V to U.

Hypersurface potential wells: model operator

• DEFINE: $H^{h,0}$ is the self-adjoint operator in $L^2(\mathbb{R} \times S, dt \, dx_{g_0})$:

$$H^{h,0} = -h^2 \frac{\partial^2}{\partial t^2} + \left(ihd + \omega_{0,0} + \frac{1}{k+1}t^{k+1}\omega_{0,1}\right)^* \left(ihd + \omega_{0,0} + \frac{1}{k+1}t^{k+1}\omega_{0,1}\right)$$

with Dirichlet boundary conditions.

• The operator $H^{h,0}$ has discrete spectrum.

Hypersurface potential wells: model operator

- H_D^h the unbounded self-adjoint operator in $L^2(D)$ given by the operator H^h in the domain $D = \overline{U}$ with Dirichlet boundary conditions.
- CLAIM: IF $\lambda^0(h)$ such that $\lambda^0(h) \leq Dh^{(2k+2)/(k+2)}$ is an approximate eigenvalue of $H^{h,0}$:

$$\|(H^{h,0} - \lambda^0(h))w^h\| \le Ch^{(2k+3)/(k+2)} \|w^h\|, \quad w^h \in C_c^{\infty}(\mathbb{R} \times S),$$

THEN $\lambda^0(h)$ is an approximate eigenvalue of H_D^h :

$$\|(H_D^h - \lambda^0(h))v^h\| \le Ch^{(2k+3)/(k+2)} \|v^h\|, \quad v^h = (\Theta^{-1})^* w^h \in C_c^\infty(U).$$

- Take $x_1 \in S$ such that $|\omega_{0,1}(x_1)| = \omega_{\min}(B) (= \inf_{x \in S} |\omega_{0,1}(x)|).$
- Take normal coordinates $f : U(x_1) \subset S \to \mathbb{R}^{n-1}$ on S defined in a neighborhood $U(x_1)$ of x_1 , where $f(U(x_1)) = B(0,r)$ is a ball in \mathbb{R}^{n-1} centered at the origin and $f(x_1) = 0$.
- Choose a function $\phi \in C^{\infty}(B(0,r))$ such that $d\phi = \omega_{0,0}$.
- Write $\omega_{0,1} = \sum_{j=1}^{n-1} \omega_j(s) \, ds_j$.

- Consider $\alpha_1 \in \mathbb{R}$ such that $\lambda_0(\alpha_1) = \lambda \omega_{\min}(B)^{-2/(k+2)} \ge \hat{\nu}$.
- $\psi \in L^2(\mathbb{R})$ a normalized eigenfunction of $P(\alpha_1)$, corresponding to $\lambda_0(\alpha_1)$:

$$\left[-\frac{d^2}{dt^2} + \left(\frac{1}{k+1}t^{k+1} - \alpha_1\right)^2\right]\psi(t) = \lambda\omega_{\min}(B)^{-\frac{2}{k+2}}\psi(t), \quad \|\psi\|_{L^2(\mathbb{R})} = 1.$$

• Put

$$\Psi_h(t) = \omega_{\min}(B)^{\frac{1}{2(k+2)}} h^{-\frac{1}{2(k+2)}} \psi(\omega_{\min}(B)^{\frac{1}{k+2}} h^{-\frac{1}{k+2}} t).$$

 $\Phi \in C^\infty(\mathbb{R} \times B(0,r))$ is defined by

$$\Phi_h(t,s) = ch^{-\beta/2(n-1)}\chi(s) \exp\left(-i\frac{\phi(s)}{h}\right) \exp\left(i\frac{\alpha_1}{\omega_{\min}(B)^{-\frac{k+1}{k+2}}h^{\frac{1}{k+2}}}\sum_{j=1}^{n-1}\omega_j(0)s_j\right)$$
$$\times \exp\left(-\frac{|s|^2}{2h^{2\beta}}\right)\Psi_h(t), \quad t \in \mathbb{R}, \quad s \in B(0,r),$$

where $\beta = \frac{1}{3(k+2)}$, $\chi \in C_c^{\infty}(B(0,r))$ is a cut-off function, and c is chosen in such a way that $\|\Phi\|_{L^2(S \times \mathbb{R})} = 1$.

• LEMMA:

For any $\lambda \geq \hat{\nu} \, \omega_{\min}(B)^{2/(k+2)}$, we have

$$\|(H^{h,0} - \lambda h^{\frac{2k+2}{k+2}})\Phi_h\| \le Ch^{\frac{6k+8}{3(k+2)}} \|\Phi_h\|.$$

• Take

$$a < \lambda_0 < \lambda_1 < \ldots < \lambda_N < b.$$

• Then the result follows from the abstract theorem with

$$\mu_j^h = h^{\frac{2k+2}{k+2}} \lambda_j.$$

References

[1] Helffer B., Kordyukov Yu. A. Spectral gaps for periodic Schrödinger operators with hypersurface magnetic wells, preprint arXiv:0801.4460.

[2] Helffer B., Kordyukov Yu. A. The periodic magnetic Schrödinger operators: spectral gaps and tunneling effect, preprint math.SP/0702776; to appear in Proc. Steklov Inst. of Math., 261 (2008).

[3] Helffer B., Kordyukov Yu. A. Semiclassical asymptotics and gaps in the spectra of periodic Schrödinger operators with magnetic wells, Trans. Amer. Math. Soc. 360 (2008), 1681-1694.

[4] Kordyukov Yu. A. Spectral gaps for periodic Schrödinger operators with strong magnetic fields, Commun. Math. Phys. 253 (2005), no. 2, 371–384.